
Additional articles
Part 3

Ilya Kantor

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Built at December 1, 2019

The last version of the tutorial is at https://javascript.info.

We constantly work to improve the tutorial. If you find any mistakes, please write at
our github.

Frames and windows

Popups and window methods

Cross-window communication

The clickjacking attack

Binary data, files

ArrayBuffer, binary arrays

TextDecoder and TextEncoder

Blob

File and FileReader

Network requests

Fetch

FormData

Fetch: Download progress

Fetch: Abort

Fetch: Cross-Origin Requests

Fetch API

URL objects

XMLHttpRequest

Resumable file upload

Long polling

WebSocket

Server Sent Events

Storing data in the browser

Cookies, document.cookie

LocalStorage, sessionStorage

IndexedDB

Animation

Bezier curve

CSS-animations

JavaScript animations

Web components

From the orbital height

https://javascript.info/
https://github.com/javascript-tutorial/en.javascript.info/issues/new

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Custom elements

Shadow DOM

Template element

Shadow DOM slots, composition

Shadow DOM styling

Shadow DOM and events

Regular expressions

Patterns and flags

Character classes

Unicode: flag "u" and class \p{...}

Anchors: string start ^ and end $

Multiline mode of anchors ^ $, flag "m"

Word boundary: \b

Escaping, special characters

Sets and ranges [...]

Quantifiers +, *, ? and {n}

Greedy and lazy quantifiers

Capturing groups

Backreferences in pattern: \N and \k<name>

Alternation (OR) |

Lookahead and lookbehind

Catastrophic backtracking

Sticky flag "y", searching at position

Methods of RegExp and String

A popup window is one of the oldest methods to show additional document to user.

Basically, you just run:

…And it will open a new window with given URL. Most modern browsers are
configured to open new tabs instead of separate windows.

Popups exist from really ancient times. The initial idea was to show another content
without closing the main window. As of now, there are other ways to do that: we can
load content dynamically with fetch and show it in a dynamically generated <div> .
So, popups is not something we use everyday.

Also, popups are tricky on mobile devices, that don’t show multiple windows
simultaneously.

Still, there are tasks where popups are still used, e.g. for OAuth authorization (login
with Google/Facebook/…), because:

1. A popup is a separate window with its own independent JavaScript environment.
So opening a popup with a third-party non-trusted site is safe.

2. It’s very easy to open a popup.

3. A popup can navigate (change URL) and send messages to the opener window.

In the past, evil sites abused popups a lot. A bad page could open tons of popup
windows with ads. So now most browsers try to block popups and protect the user.

Most browsers block popups if they are called outside of user-triggered event
handlers like onclick .

For example:

Frames and windows
Popups and window methods

window.open('https://javascript.info/')

Popup blocking

// popup blocked

window.open('https://javascript.info');

// popup allowed

button.onclick = () => {

 window.open('https://javascript.info');

};

●

This way users are somewhat protected from unwanted popups, but the functionality
is not disabled totally.

What if the popup opens from onclick , but after setTimeout ? That’s a bit
tricky.

Try this code:

The popup opens in Chrome, but gets blocked in Firefox.

…If we decrease the delay, the popup works in Firefox too:

The difference is that Firefox treats a timeout of 2000ms or less are acceptable, but
after it – removes the “trust”, assuming that now it’s “outside of the user action”. So
the first one is blocked, and the second one is not.

The syntax to open a popup is: window.open(url, name, params) :

url

An URL to load into the new window.

name

A name of the new window. Each window has a window.name , and here we can
specify which window to use for the popup. If there’s already a window with such
name – the given URL opens in it, otherwise a new window is opened.

params

The configuration string for the new window. It contains settings, delimited by a
comma. There must be no spaces in params, for instance:
width:200,height=100 .

Settings for params :

Position:

// open after 3 seconds

setTimeout(() => window.open('http://google.com'), 3000);

// open after 1 seconds

setTimeout(() => window.open('http://google.com'), 1000);

window.open

●

●

●

●

●

●

●

●

●

left/top (numeric) – coordinates of the window top-left corner on the
screen. There is a limitation: a new window cannot be positioned offscreen.

width/height (numeric) – width and height of a new window. There is a
limit on minimal width/height, so it’s impossible to create an invisible window.

Window features:

menubar (yes/no) – shows or hides the browser menu on the new window.

toolbar (yes/no) – shows or hides the browser navigation bar (back,
forward, reload etc) on the new window.

location (yes/no) – shows or hides the URL field in the new window. FF and
IE don’t allow to hide it by default.

status (yes/no) – shows or hides the status bar. Again, most browsers force
it to show.

resizable (yes/no) – allows to disable the resize for the new window. Not
recommended.

scrollbars (yes/no) – allows to disable the scrollbars for the new window.
Not recommended.

There is also a number of less supported browser-specific features, which are
usually not used. Check window.open in MDN  for examples.

Let’s open a window with minimal set of features just to see which of them browser
allows to disable:

Here most “window features” are disabled and window is positioned offscreen. Run it
and see what really happens. Most browsers “fix” odd things like zero
width/height and offscreen left/top . For instance, Chrome open such a
window with full width/height, so that it occupies the full screen.

Let’s add normal positioning options and reasonable width , height , left ,
top coordinates:

Example: a minimalistic window

let params = `scrollbars=no,resizable=no,status=no,location=no,toolbar=no,menubar=no

width=0,height=0,left=-1000,top=-1000`;

open('/', 'test', params);

let params = `scrollbars=no,resizable=no,status=no,location=no,toolbar=no,menubar=no

width=600,height=300,left=100,top=100`;

open('/', 'test', params);

https://developer.mozilla.org/en/DOM/window.open

●

●

●

●

Most browsers show the example above as required.

Rules for omitted settings:

If there is no 3rd argument in the open call, or it is empty, then the default
window parameters are used.

If there is a string of params, but some yes/no features are omitted, then the
omitted features assumed to have no value. So if you specify params, make sure
you explicitly set all required features to yes.

If there is no left/top in params, then the browser tries to open a new window
near the last opened window.

If there is no width/height , then the new window will be the same size as the
last opened.

The open call returns a reference to the new window. It can be used to manipulate
it’s properties, change location and even more.

In this example, we generate popup content from JavaScript:

And here we modify the contents after loading:

Please note: immediately after window.open , the new window isn’t loaded yet.
That’s demonstrated by alert in line (*) . So we wait for onload to modify it.
We could also use DOMContentLoaded handler for newWin.document .

Accessing popup from window

let newWin = window.open("about:blank", "hello", "width=200,height=200");

newWin.document.write("Hello, world!");

let newWindow = open('/', 'example', 'width=300,height=300')

newWindow.focus();

alert(newWindow.location.href); // (*) about:blank, loading hasn't started yet

newWindow.onload = function() {

 let html = `<div style="font-size:30px">Welcome!</div>`;

 newWindow.document.body.insertAdjacentHTML('afterbegin', html);

};

⚠ Same origin policy

Windows may freely access content of each other only if they come from the
same origin (the same protocol://domain:port).

Otherwise, e.g. if the main window is from site.com , and the popup from
gmail.com , that’s impossible for user safety reasons. For the details, see
chapter Cross-window communication.

A popup may access the “opener” window as well using window.opener
reference. It is null for all windows except popups.

If you run the code below, it replaces the opener (current) window content with
“Test”:

So the connection between the windows is bidirectional: the main window and the
popup have a reference to each other.

To close a window: win.close() .

To check if a window is closed: win.closed .

Technically, the close() method is available for any window , but
window.close() is ignored by most browsers if window is not created with
window.open() . So it’ll only work on a popup.

The closed property is true if the window is closed. That’s useful to check if the
popup (or the main window) is still open or not. A user can close it anytime, and our
code should take that possibility into account.

This code loads and then closes the window:

Accessing window from popup

let newWin = window.open("about:blank", "hello", "width=200,height=200");

newWin.document.write(

 "<script>window.opener.document.body.innerHTML = 'Test'<\/script>"

);

Closing a popup

let newWindow = open('/', 'example', 'width=300,height=300');

newWindow.onload = function() {

 newWindow.close();

There are methods to move/resize a window:

win.moveBy(x,y)

Move the window relative to current position x pixels to the right and y pixels
down. Negative values are allowed (to move left/up).

win.moveTo(x,y)

Move the window to coordinates (x,y) on the screen.

win.resizeBy(width,height)

Resize the window by given width/height relative to the current size. Negative
values are allowed.

win.resizeTo(width,height)

Resize the window to the given size.

There’s also window.onresize event.

⚠ Only popups

To prevent abuse, the browser usually blocks these methods. They only work
reliably on popups that we opened, that have no additional tabs.

⚠ No minification/maximization

JavaScript has no way to minify or maximize a window. These OS-level functions
are hidden from Frontend-developers.

Move/resize methods do not work for maximized/minimized windows.

We already talked about scrolling a window in the chapter Window sizes and
scrolling.

win.scrollBy(x,y)

Scroll the window x pixels right and y down relative the current scroll. Negative
values are allowed.

 alert(newWindow.closed); // true

};

Scrolling and resizing

Scrolling a window

https://javascript.info/size-and-scroll-window

●

●

win.scrollTo(x,y)

Scroll the window to the given coordinates (x,y) .

elem.scrollIntoView(top = true)

Scroll the window to make elem show up at the top (the default) or at the bottom for
elem.scrollIntoView(false) .

There’s also window.onscroll event.

Theoretically, there are window.focus() and window.blur() methods to
focus/unfocus on a window. Also there are focus/blur events that allow to focus
a window and catch the moment when the visitor switches elsewhere.

In the past evil pages abused those. For instance, look at this code:

When a user attempts to switch out of the window (blur), it brings it back to focus.
The intention is to “lock” the user within the window .

So, there are limitations that forbid the code like that. There are many limitations to
protect the user from ads and evils pages. They depend on the browser.

For instance, a mobile browser usually ignores that call completely. Also focusing
doesn’t work when a popup opens in a separate tab rather than a new window.

Still, there are some things that can be done.

For instance:

When we open a popup, it’s might be a good idea to run a
newWindow.focus() on it. Just in case, for some OS/browser combinations it
ensures that the user is in the new window now.

If we want to track when a visitor actually uses our web-app, we can track
window.onfocus/onblur . That allows us to suspend/resume in-page
activities, animations etc. But please note that the blur event means that the
visitor switched out from the window, but they still may observe it. The window is
in the background, but still may be visible.

Popup windows are used rarely, as there are alternatives: loading and displaying
information in-page, or in iframe.

Focus/blur on a window

window.onblur = () => window.focus();

Summary

●

●

●

●

●

●

●

●

●

●

If we’re going to open a popup, a good practice is to inform the user about it. An
“opening window” icon near a link or button would allow the visitor to survive the
focus shift and keep both windows in mind.

A popup can be opened by the open(url, name, params) call. It returns the
reference to the newly opened window.

Browsers block open calls from the code outside of user actions. Usually a
notification appears, so that a user may allow them.

Browsers open a new tab by default, but if sizes are provided, then it’ll be a popup
window.

The popup may access the opener window using the window.opener property.

The main window and the popup can freely read and modify each other if they
havee the same origin. Otherwise, they can change location of each other and
[exchange messages.

To close the popup: use close() call. Also the user may close them (just like any
other windows). The window.closed is true after that.

Methods focus() and blur() allow to focus/unfocus a window. But they don’t
work all the time.

Events focus and blur allow to track switching in and out of the window. But
please note that a window may still be visible even in the background state, after
blur .

The “Same Origin” (same site) policy limits access of windows and frames to each
other.

The idea is that if a user has two pages open: one from john-smith.com , and
another one is gmail.com , then they wouldn’t want a script from john-
smith.com to read our mail from gmail.com . So, the purpose of the “Same
Origin” policy is to protect users from information theft.

Two URLs are said to have the “same origin” if they have the same protocol, domain
and port.

These URLs all share the same origin:

http://site.com

http://site.com/

http://site.com/my/page.html

Cross-window communication

Same Origin

●

●

●

●

●

●

●

●

These ones do not:

http://www.site.com (another domain: www. matters)

http://site.org (another domain: .org matters)

https://site.com (another protocol: https)

http://site.com:8080 (another port: 8080)

The “Same Origin” policy states that:

if we have a reference to another window, e.g. a popup created by
window.open or a window inside <iframe> , and that window comes from the
same origin, then we have full access to that window.

otherwise, if it comes from another origin, then we can’t access the content of that
window: variables, document, anything. The only exception is location : we
can change it (thus redirecting the user). But we cannot read location (so we can’t
see where the user is now, no information leak).

In action: iframe
An <iframe> tag hosts a separate embedded window, with its own separate
document and window objects.

We can access them using properties:

iframe.contentWindow to get the window inside the <iframe> .

iframe.contentDocument to get the document inside the <iframe> ,
shorthand for iframe.contentWindow.document .

When we access something inside the embedded window, the browser checks if the
iframe has the same origin. If that’s not so then the access is denied (writing to
location is an exception, it’s still permitted).

For instance, let’s try reading and writing to <iframe> from another origin:

<iframe src="https://example.com" id="iframe"></iframe>

<script>

 iframe.onload = function() {

 // we can get the reference to the inner window

 let iframeWindow = iframe.contentWindow; // OK

 try {

 // ...but not to the document inside it

 let doc = iframe.contentDocument; // ERROR

 } catch(e) {

 alert(e); // Security Error (another origin)

 }

 // also we can't READ the URL of the page in iframe

●

●

The code above shows errors for any operations except:

Getting the reference to the inner window iframe.contentWindow – that’s
allowed.

Writing to location .

Contrary to that, if the <iframe> has the same origin, we can do anything with it:

 iframe.onload vs iframe.contentWindow.onload

The iframe.onload event (on the <iframe> tag) is essentially the same as
iframe.contentWindow.onload (on the embedded window object). It
triggers when the embedded window fully loads with all resources.

…But we can’t access iframe.contentWindow.onload for an iframe from
another origin, so using iframe.onload .

By definition, two URLs with different domains have different origins.

 try {

 // Can't read URL from the Location object

 let href = iframe.contentWindow.location.href; // ERROR

 } catch(e) {

 alert(e); // Security Error

 }

 // ...we can WRITE into location (and thus load something else into the iframe)

 iframe.contentWindow.location = '/'; // OK

 iframe.onload = null; // clear the handler, not to run it after the location cha

 };

</script>

<!-- iframe from the same site -->

<iframe src="/" id="iframe"></iframe>

<script>

 iframe.onload = function() {

 // just do anything

 iframe.contentDocument.body.prepend("Hello, world!");

 };

</script>

Windows on subdomains: document.domain

But if windows share the same second-level domain, for instance
john.site.com , peter.site.com and site.com (so that their common
second-level domain is site.com), we can make the browser ignore that
difference, so that they can be treated as coming from the “same origin” for the
purposes of cross-window communication.

To make it work, each such window should run the code:

That’s all. Now they can interact without limitations. Again, that’s only possible for
pages with the same second-level domain.

When an iframe comes from the same origin, and we may access its document ,
there’s a pitfall. It’s not related to cross-origin things, but important to know.

Upon its creation an iframe immediately has a document. But that document is
different from the one that loads into it!

So if we do something with the document immediately, that will probably be lost.

Here, look:

We shouldn’t work with the document of a not-yet-loaded iframe, because that’s the
wrong document. If we set any event handlers on it, they will be ignored.

How to detect the moment when the document is there?

The right document is definitely at place when iframe.onload triggers. But it only
triggers when the whole iframe with all resources is loaded.

We can try to catch the moment earlier using checks in setInterval :

document.domain = 'site.com';

Iframe: wrong document pitfall

<iframe src="/" id="iframe"></iframe>

<script>

 let oldDoc = iframe.contentDocument;

 iframe.onload = function() {

 let newDoc = iframe.contentDocument;

 // the loaded document is not the same as initial!

 alert(oldDoc == newDoc); // false

 };

</script>

●

●

●

●

●

An alternative way to get a window object for <iframe> – is to get it from the
named collection window.frames :

By number: window.frames[0] – the window object for the first frame in the
document.

By name: window.frames.iframeName – the window object for the frame
with name="iframeName" .

For instance:

An iframe may have other iframes inside. The corresponding window objects form
a hierarchy.

Navigation links are:

window.frames – the collection of “children” windows (for nested frames).

window.parent – the reference to the “parent” (outer) window.

window.top – the reference to the topmost parent window.

For instance:

<iframe src="/" id="iframe"></iframe>

<script>

 let oldDoc = iframe.contentDocument;

 // every 100 ms check if the document is the new one

 let timer = setInterval(() => {

 let newDoc = iframe.contentDocument;

 if (newDoc == oldDoc) return;

 alert("New document is here!");

 clearInterval(timer); // cancel setInterval, don't need it any more

 }, 100);

</script>

Collection: window.frames

<iframe src="/" style="height:80px" name="win" id="iframe"></iframe>

<script>

 alert(iframe.contentWindow == frames[0]); // true

 alert(iframe.contentWindow == frames.win); // true

</script>

We can use the top property to check if the current document is open inside a
frame or not:

The sandbox attribute allows for the exclusion of certain actions inside an
<iframe> in order to prevent it executing untrusted code. It “sandboxes” the iframe
by treating it as coming from another origin and/or applying other limitations.

There’s a “default set” of restrictions applied for <iframe sandbox
src="..."> . But it can be relaxed if we provide a space-separated list of
restrictions that should not be applied as a value of the attribute, like this: <iframe
sandbox="allow-forms allow-popups"> .

In other words, an empty "sandbox" attribute puts the strictest limitations
possible, but we can put a space-delimited list of those that we want to lift.

Here’s a list of limitations:

allow-same-origin

By default "sandbox" forces the “different origin” policy for the iframe. In other
words, it makes the browser to treat the iframe as coming from another origin,
even if its src points to the same site. With all implied restrictions for scripts. This
option removes that feature.

allow-top-navigation

Allows the iframe to change parent.location .

allow-forms

Allows to submit forms from iframe .

allow-scripts

Allows to run scripts from the iframe .

allow-popups

window.frames[0].parent === window; // true

if (window == top) { // current window == window.top?

 alert('The script is in the topmost window, not in a frame');

} else {

 alert('The script runs in a frame!');

}

The “sandbox” iframe attribute

Allows to window.open popups from the iframe

See the manual  for more.

The example below demonstrates a sandboxed iframe with the default set of
restrictions: <iframe sandbox src="..."> . It has some JavaScript and a
form.

Please note that nothing works. So the default set is really harsh:

https://plnkr.co/edit/GAhzx0j3JwAB1TMzwyxL?p=preview 

 Please note:

The purpose of the "sandbox" attribute is only to add more restrictions. It
cannot remove them. In particular, it can’t relax same-origin restrictions if the
iframe comes from another origin.

The postMessage interface allows windows to talk to each other no matter which
origin they are from.

So, it’s a way around the “Same Origin” policy. It allows a window from john-
smith.com to talk to gmail.com and exchange information, but only if they both
agree and call corresponding JavaScript functions. That makes it safe for users.

The interface has two parts.

postMessage
The window that wants to send a message calls postMessage  method of the
receiving window. In other words, if we want to send the message to win , we
should call win.postMessage(data, targetOrigin) .

Arguments:

data

The data to send. Can be any object, the data is cloned using the “structured cloning
algorithm”. IE supports only strings, so we should JSON.stringify complex
objects to support that browser.

targetOrigin

Specifies the origin for the target window, so that only a window from the given origin
will get the message.

The targetOrigin is a safety measure. Remember, if the target window comes
from another origin, we can’t read it’s location in the sender window. So we can’t

Cross-window messaging

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://plnkr.co/edit/GAhzx0j3JwAB1TMzwyxL?p=preview
https://developer.mozilla.org/en-US/docs/Web/API/Window.postMessage

be sure which site is open in the intended window right now: the user could navigate
away, and the sender window has no idea about it.

Specifying targetOrigin ensures that the window only receives the data if it’s
still at the right site. Important when the data is sensitive.

For instance, here win will only receive the message if it has a document from the
origin http://example.com :

If we don’t want that check, we can set targetOrigin to * .

onmessage
To receive a message, the target window should have a handler on the message
event. It triggers when postMessage is called (and targetOrigin check is
successful).

The event object has special properties:

data

The data from postMessage .

origin

The origin of the sender, for instance http://javascript.info .

source

The reference to the sender window. We can immediately
source.postMessage(...) back if we want.

<iframe src="http://example.com" name="example">

<script>

 let win = window.frames.example;

 win.postMessage("message", "http://example.com");

</script>

<iframe src="http://example.com" name="example">

<script>

 let win = window.frames.example;

 win.postMessage("message", "*");

</script>

●

●

●

●

●

To assign that handler, we should use addEventListener , a short syntax
window.onmessage does not work.

Here’s an example:

The full example:

https://plnkr.co/edit/ltrzlGvN8UPdpMtyxlI9?p=preview 

 There’s no delay

There’s totally no delay between postMessage and the message event. The
event triggers synchronously, faster than setTimeout(...,0) .

To call methods and access the content of another window, we should first have a
reference to it.

For popups we have these references:

From the opener window: window.open – opens a new window and returns a
reference to it,

From the popup: window.opener – is a reference to the opener window from a
popup.

For iframes, we can access parent/children windows using:

window.frames – a collection of nested window objects,

window.parent , window.top are the references to parent and top windows,

iframe.contentWindow is the window inside an <iframe> tag.

If windows share the same origin (host, port, protocol), then windows can do
whatever they want with each other.

window.addEventListener("message", function(event) {

 if (event.origin != 'http://javascript.info') {

 // something from an unknown domain, let's ignore it

 return;

 }

 alert("received: " + event.data);

 // can message back using event.source.postMessage(...)

});

Summary

https://plnkr.co/edit/ltrzlGvN8UPdpMtyxlI9?p=preview

●

●

●

●

●

●

●

Otherwise, only possible actions are:

Change the location of another window (write-only access).

Post a message to it.

Exceptions are:

Windows that share the same second-level domain: a.site.com and
b.site.com . Then setting document.domain='site.com' in both of them
puts them into the “same origin” state.

If an iframe has a sandbox attribute, it is forcefully put into the “different origin”
state, unless the allow-same-origin is specified in the attribute value. That
can be used to run untrusted code in iframes from the same site.

The postMessage interface allows two windows with any origins to talk:

1. The sender calls targetWin.postMessage(data, targetOrigin) .

2. If targetOrigin is not '*' , then the browser checks if window targetWin
has the origin targetOrigin .

3. If it is so, then targetWin triggers the message event with special properties:

origin – the origin of the sender window (like http://my.site.com)

source – the reference to the sender window.

data – the data, any object in everywhere except IE that supports only
strings.

We should use addEventListener to set the handler for this event inside the
target window.

The “clickjacking” attack allows an evil page to click on a “victim site” on behalf of the
visitor.

Many sites were hacked this way, including Twitter, Facebook, Paypal and other
sites. They have all been fixed, of course.

The idea is very simple.

Here’s how clickjacking was done with Facebook:

1. A visitor is lured to the evil page. It doesn’t matter how.

The clickjacking attack

The idea

2. The page has a harmless-looking link on it (like “get rich now” or “click here, very
funny”).

3. Over that link the evil page positions a transparent <iframe> with src from
facebook.com, in such a way that the “Like” button is right above that link. Usually
that’s done with z-index .

4. In attempting to click the link, the visitor in fact clicks the button.

Here’s how the evil page looks. To make things clear, the <iframe> is half-
transparent (in real evil pages it’s fully transparent):

The full demo of the attack:

https://plnkr.co/edit/GQKK8Zc7DXT3KdV7tQUu?p=preview 

Here we have a half-transparent <iframe src="facebook.html"> , and in the
example we can see it hovering over the button. A click on the button actually clicks
on the iframe, but that’s not visible to the user, because the iframe is transparent.

As a result, if the visitor is authorized on Facebook (“remember me” is usually turned
on), then it adds a “Like”. On Twitter that would be a “Follow” button.

Here’s the same example, but closer to reality, with opacity:0 for <iframe> :

https://plnkr.co/edit/aebDnhU3B7c6d2QN5Rhy?p=preview 

The demo

<style>

iframe { /* iframe from the victim site */

 width: 400px;

 height: 100px;

 position: absolute;

 top:0; left:-20px;

 opacity: 0.5; /* in real opacity:0 */

 z-index: 1;

}

</style>

<div>Click to get rich now:</div>

<!-- The url from the victim site -->

<iframe src="/clickjacking/facebook.html"></iframe>

<button>Click here!</button>

<div>...And you're cool (I'm a cool hacker actually)!</div>

https://plnkr.co/edit/GQKK8Zc7DXT3KdV7tQUu?p=preview
https://plnkr.co/edit/aebDnhU3B7c6d2QN5Rhy?p=preview

All we need to attack – is to position the <iframe> on the evil page in such a way
that the button is right over the link. So that when a user clicks the link, they actually
click the button. That’s usually doable with CSS.

 Clickjacking is for clicks, not for keyboard

The attack only affects mouse actions (or similar, like taps on mobile).

Keyboard input is much difficult to redirect. Technically, if we have a text field to
hack, then we can position an iframe in such a way that text fields overlap each
other. So when a visitor tries to focus on the input they see on the page, they
actually focus on the input inside the iframe.

But then there’s a problem. Everything that the visitor types will be hidden,
because the iframe is not visible.

People will usually stop typing when they can’t see their new characters printing
on the screen.

The oldest defence is a bit of JavaScript which forbids opening the page in a frame
(so-called “framebusting”).

That looks like this:

That is: if the window finds out that it’s not on top, then it automatically makes itself
the top.

This not a reliable defence, because there are many ways to hack around it. Let’s
cover a few.

Blocking top-navigation
We can block the transition caused by changing top.location in beforeunload
event handler.

The top page (enclosing one, belonging to the hacker) sets a preventing handler to
it, like this:

Old-school defences (weak)

if (top != window) {

 top.location = window.location;

}

window.onbeforeunload = function() {

 return false;

};

https://javascript.info/onload-ondomcontentloaded#window.onbeforeunload

When the iframe tries to change top.location , the visitor gets a message
asking them whether they want to leave.

In most cases the visitor would answer negatively because they don’t know about
the iframe – all they can see is the top page, there’s no reason to leave. So
top.location won’t change!

In action:

https://plnkr.co/edit/WCEMuiV3PmW1klyyf6FH?p=preview 

Sandbox attribute
One of the things restricted by the sandbox attribute is navigation. A sandboxed
iframe may not change top.location .

So we can add the iframe with sandbox="allow-scripts allow-forms" .
That would relax the restrictions, permitting scripts and forms. But we omit allow-
top-navigation so that changing top.location is forbidden.

Here’s the code:

There are other ways to work around that simple protection too.

The server-side header X-Frame-Options can permit or forbid displaying the
page inside a frame.

It must be sent exactly as HTTP-header: the browser will ignore it if found in HTML
<meta> tag. So, <meta http-equiv="X-Frame-Options"...> won’t do
anything.

The header may have 3 values:

DENY

Never ever show the page inside a frame.

SAMEORIGIN

Allow inside a frame if the parent document comes from the same origin.

ALLOW-FROM domain

Allow inside a frame if the parent document is from the given domain.

For instance, Twitter uses X-Frame-Options: SAMEORIGIN .

 <iframe sandbox="allow-scripts allow-forms" src="facebook.html"></iframe>

X-Frame-Options

https://plnkr.co/edit/WCEMuiV3PmW1klyyf6FH?p=preview

The X-Frame-Options header has a side-effect. Other sites won’t be able to
show our page in a frame, even if they have good reasons to do so.

So there are other solutions… For instance, we can “cover” the page with a <div>
with styles height: 100%; width: 100%; , so that it will intercept all clicks.
That <div> is to be removed if window == top or if we figure out that we don’t
need the protection.

Something like this:

The demo:

https://plnkr.co/edit/WuzXGKQamlVp1sE08svn?p=preview 

The samesite cookie attribute can also prevent clickjacking attacks.

A cookie with such attribute is only sent to a website if it’s opened directly, not via a
frame, or otherwise. More information in the chapter Cookies, document.cookie.

If the site, such as Facebook, had samesite attribute on its authentication cookie,
like this:

Showing with disabled functionality

<style>

 #protector {

 height: 100%;

 width: 100%;

 position: absolute;

 left: 0;

 top: 0;

 z-index: 99999999;

 }

</style>

<div id="protector">

 Go to the site

</div>

<script>

 // there will be an error if top window is from the different origin

 // but that's ok here

 if (top.document.domain == document.domain) {

 protector.remove();

 }

</script>

Samesite cookie attribute

https://plnkr.co/edit/WuzXGKQamlVp1sE08svn?p=preview

●

●

…Then such cookie wouldn’t be sent when Facebook is open in iframe from another
site. So the attack would fail.

The samesite cookie attribute will not have an effect when cookies are not used.
This may allow other websites to easily show our public, unauthenticated pages in
iframes.

However, this may also allow clickjacking attacks to work in a few limited cases. An
anonymous polling website that prevents duplicate voting by checking IP addresses,
for example, would still be vulnerable to clickjacking because it does not authenticate
users using cookies.

Clickjacking is a way to “trick” users into clicking on a victim site without even
knowing what’s happening. That’s dangerous if there are important click-activated
actions.

A hacker can post a link to their evil page in a message, or lure visitors to their page
by some other means. There are many variations.

From one perspective – the attack is “not deep”: all a hacker is doing is intercepting
a single click. But from another perspective, if the hacker knows that after the click
another control will appear, then they may use cunning messages to coerce the user
into clicking on them as well.

The attack is quite dangerous, because when we engineer the UI we usually don’t
anticipate that a hacker may click on behalf of the visitor. So vulnerabilities can be
found in totally unexpected places.

It is recommended to use X-Frame-Options: SAMEORIGIN on pages (or
whole websites) which are not intended to be viewed inside frames.

Use a covering <div> if we want to allow our pages to be shown in iframes, but
still stay safe.

Working with binary data and files in JavaScript.

In web-development we meet binary data mostly while dealing with files (create,
upload, download). Another typical use case is image processing.

Set-Cookie: authorization=secret; samesite

Summary

Binary data, files

ArrayBuffer, binary arrays

●

●

●

●

●

●

That’s all possible in JavaScript, and binary operations are high-performant.

Although, there’s a bit of confusion, because there are many classes. To name a
few:

ArrayBuffer , Uint8Array , DataView , Blob , File , etc.

Binary data in JavaScript is implemented in a non-standard way, compared to other
languages. But when we sort things out, everything becomes fairly simple.

The basic binary object is ArrayBuffer – a reference to a fixed-length
contiguous memory area.

We create it like this:

This allocates a contiguous memory area of 16 bytes and pre-fills it with zeroes.

⚠ ArrayBuffer is not an array of something

Let’s eliminate a possible source of confusion. ArrayBuffer has nothing in
common with Array :

It has a fixed length, we can’t increase or decrease it.

It takes exactly that much space in the memory.

To access individual bytes, another “view” object is needed, not
buffer[index] .

ArrayBuffer is a memory area. What’s stored in it? It has no clue. Just a raw
sequence of bytes.

To manipulate an ArrayBuffer , we need to use a “view” object.

A view object does not store anything on it’s own. It’s the “eyeglasses” that give an
interpretation of the bytes stored in the ArrayBuffer .

For instance:

Uint8Array – treats each byte in ArrayBuffer as a separate number, with
possible values are from 0 to 255 (a byte is 8-bit, so it can hold only that much).
Such value is called a “8-bit unsigned integer”.

Uint16Array – treats every 2 bytes as an integer, with possible values from 0
to 65535. That’s called a “16-bit unsigned integer”.

let buffer = new ArrayBuffer(16); // create a buffer of length 16

alert(buffer.byteLength); // 16

●

●

Uint32Array – treats every 4 bytes as an integer, with possible values from 0
to 4294967295. That’s called a “32-bit unsigned integer”.

Float64Array – treats every 8 bytes as a floating point number with possible

values from 5.0x10-324 to 1.8x10308 .

So, the binary data in an ArrayBuffer of 16 bytes can be interpreted as 16 “tiny
numbers”, or 8 bigger numbers (2 bytes each), or 4 even bigger (4 bytes each), or 2
floating-point values with high precision (8 bytes each).

10

0 21 3

2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 5 6 7

0 1 2 3

0 1

new ArrayBuffer(16)

Uint16Array

Uint8Array

Uint32Array

Float64Array

ArrayBuffer is the core object, the root of everything, the raw binary data.

But if we’re going to write into it, or iterate over it, basically for almost any operation –
we must use a view, e.g:

let buffer = new ArrayBuffer(16); // create a buffer of length 16

let view = new Uint32Array(buffer); // treat buffer as a sequence of 32-bit integers

alert(Uint32Array.BYTES_PER_ELEMENT); // 4 bytes per integer

alert(view.length); // 4, it stores that many integers

alert(view.byteLength); // 16, the size in bytes

// let's write a value

view[0] = 123456;

// iterate over values

for(let num of view) {

 alert(num); // 123456, then 0, 0, 0 (4 values total)

}

TypedArray

The common term for all these views (Uint8Array , Uint32Array , etc) is
TypedArray  . They share the same set of methods and properities.

They are much more like regular arrays: have indexes and iterable.

A typed array constructor (be it Int8Array or Float64Array , doesn’t matter)
behaves differently depending on argument types.

There are 5 variants of arguments:

1. If an ArrayBuffer argument is supplied, the view is created over it. We used
that syntax already.

Optionally we can provide byteOffset to start from (0 by default) and the
length (till the end of the buffer by default), then the view will cover only a part
of the buffer .

2. If an Array , or any array-like object is given, it creates a typed array of the same
length and copies the content.

We can use it to pre-fill the array with the data:

3. If another TypedArray is supplied, it does the same: creates a typed array of
the same length and copies values. Values are converted to the new type in the
process, if needed.

4. For a numeric argument length – creates the typed array to contain that many
elements. Its byte length will be length multiplied by the number of bytes in a
single item TypedArray.BYTES_PER_ELEMENT :

new TypedArray(buffer, [byteOffset], [length]);

new TypedArray(object);

new TypedArray(typedArray);

new TypedArray(length);

new TypedArray();

let arr = new Uint8Array([0, 1, 2, 3]);

alert(arr.length); // 4, created binary array of the same length

alert(arr[1]); // 1, filled with 4 bytes (unsigned 8-bit integers) with given v

let arr16 = new Uint16Array([1, 1000]);

let arr8 = new Uint8Array(arr16);

alert(arr8[0]); // 1

alert(arr8[1]); // 232, tried to copy 1000, but can't fit 1000 into 8 bits (exp

https://tc39.github.io/ecma262/#sec-typedarray-objects

●

●

●

●

●

●

5. Without arguments, creates an zero-length typed array.

We can create a TypedArray directly, without mentioning ArrayBuffer . But a
view cannot exist without an underlying ArrayBuffer , so gets created
automatically in all these cases except the first one (when provided).

To access the ArrayBuffer , there are properties:

arr.buffer – references the ArrayBuffer .

arr.byteLength – the length of the ArrayBuffer .

So, we can always move from one view to another:

Here’s the list of typed arrays:

Uint8Array , Uint16Array , Uint32Array – for integer numbers of 8, 16
and 32 bits.

Uint8ClampedArray – for 8-bit integers, “clamps” them on assignment (see
below).

Int8Array , Int16Array , Int32Array – for signed integer numbers (can
be negative).

Float32Array , Float64Array – for signed floating-point numbers of 32 and
64 bits.

⚠ No int8 or similar single-valued types

Please note, despite of the names like Int8Array , there’s no single-value type
like int , or int8 in JavaScript.

That’s logical, as Int8Array is not an array of these individual values, but
rather a view on ArrayBuffer .

Out-of-bounds behavior
What if we attempt to write an out-of-bounds value into a typed array? There will be
no error. But extra bits are cut-off.

let arr = new Uint16Array(4); // create typed array for 4 integers

alert(Uint16Array.BYTES_PER_ELEMENT); // 2 bytes per integer

alert(arr.byteLength); // 8 (size in bytes)

let arr8 = new Uint8Array([0, 1, 2, 3]);

// another view on the same data

let arr16 = new Uint16Array(arr8.buffer);

For instance, let’s try to put 256 into Uint8Array . In binary form, 256 is
100000000 (9 bits), but Uint8Array only provides 8 bits per value, that makes
the available range from 0 to 255.

For bigger numbers, only the rightmost (less significant) 8 bits are stored, and the
rest is cut off:

8-bit integer

256

So we’ll get zero.

For 257, the binary form is 100000001 (9 bits), the rightmost 8 get stored, so we’ll
have 1 in the array:

8-bit integer
257

In other words, the number modulo 28 is saved.

Here’s the demo:

Uint8ClampedArray is special in this aspect, its behavior is different. It saves
255 for any number that is greater than 255, and 0 for any negative number. That
behavior is useful for image processing.

let uint8array = new Uint8Array(16);

let num = 256;

alert(num.toString(2)); // 100000000 (binary representation)

uint8array[0] = 256;

uint8array[1] = 257;

alert(uint8array[0]); // 0

alert(uint8array[1]); // 1

TypedArray methods

●

●

●

●

●

●

●

●

●

TypedArray has regular Array methods, with notable exceptions.

We can iterate, map , slice , find , reduce etc.

There are few things we can’t do though:

No splice – we can’t “delete” a value, because typed arrays are views on a
buffer, and these are fixed, contiguous areas of memory. All we can do is to
assign a zero.

No concat method.

There are two additional methods:

arr.set(fromArr, [offset]) copies all elements from fromArr to the
arr , starting at position offset (0 by default).

arr.subarray([begin, end]) creates a new view of the same type from
begin to end (exclusive). That’s similar to slice method (that’s also
supported), but doesn’t copy anything – just creates a new view, to operate on the
given piece of data.

These methods allow us to copy typed arrays, mix them, create new arrays from
existing ones, and so on.

DataView  is a special super-flexible “untyped” view over ArrayBuffer . It
allows to access the data on any offset in any format.

For typed arrays, the constructor dictates what the format is. The whole array is
supposed to be uniform. The i-th number is arr[i] .

With DataView we access the data with methods like .getUint8(i) or
.getUint16(i) . We choose the format at method call time instead of the
construction time.

The syntax:

buffer – the underlying ArrayBuffer . Unlike typed arrays, DataView
doesn’t create a buffer on its own. We need to have it ready.

byteOffset – the starting byte position of the view (by default 0).

byteLength – the byte length of the view (by default till the end of buffer).

For instance, here we extract numbers in different formats from the same buffer:

DataView

new DataView(buffer, [byteOffset], [byteLength])

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DataView

●

●

●

●

●

●

●

DataView is great when we store mixed-format data in the same buffer. E.g we
store a sequence of pairs (16-bit integer, 32-bit float). Then DataView allows to
access them easily.

ArrayBuffer is the core object, a reference to the fixed-length contiguous
memory area.

To do almost any operation on ArrayBuffer , we need a view.

It can be a TypedArray :

Uint8Array , Uint16Array , Uint32Array – for unsigned integers of 8,
16, and 32 bits.

Uint8ClampedArray – for 8-bit integers, “clamps” them on assignment.

Int8Array , Int16Array , Int32Array – for signed integer numbers
(can be negative).

Float32Array , Float64Array – for signed floating-point numbers of 32
and 64 bits.

Or a DataView – the view that uses methods to specify a format, e.g.
getUint8(offset) .

In most cases we create and operate directly on typed arrays, leaving
ArrayBuffer under cover, as a “common discriminator”. We can access it as
.buffer and make another view if needed.

There are also two additional terms, that are used in descriptions of methods that
operate on binary data:

ArrayBufferView is an umbrella term for all these kinds of views.

// binary array of 4 bytes, all have the maximal value 255

let buffer = new Uint8Array([255, 255, 255, 255]).buffer;

let dataView = new DataView(buffer);

// get 8-bit number at offset 0

alert(dataView.getUint8(0)); // 255

// now get 16-bit number at offset 0, it consists of 2 bytes, together iterpreted as

alert(dataView.getUint16(0)); // 65535 (biggest 16-bit unsigned int)

// get 32-bit number at offset 0

alert(dataView.getUint32(0)); // 4294967295 (biggest 32-bit unsigned int)

dataView.setUint32(0, 0); // set 4-byte number to zero, thus setting all bytes to 0

Summary

● BufferSource is an umbrella term for ArrayBuffer or
ArrayBufferView .

We’ll see these terms in the next chapters. BufferSource is one of the most
common terms, as it means “any kind of binary data” – an ArrayBuffer or a view
over it.

Here’s a cheatsheet:

0 21 3 4 5 6 7

0 1 2 3

0 1

new ArrayBuffer(16)

A
rra

yB
uf

fe
rV

ie
w

Uint16Array
Int16Array

Uint8Array
Int8Array

Uint8ClampedArray

Uint32Array
Int32Array

Float32Array

Float64Array

DataView get/setUint8(offset) get/setFloat32(offset)...

BufferSource

10 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Concatenate typed arrays

Given an array of Uint8Array , write a function concat(arrays) that returns a
concatenation of them into a single array.

Open a sandbox with tests. 

To solution

✔ Tasks

TextDecoder and TextEncoder

https://plnkr.co/edit/AqE9Qi0BJfEI3f9MECgO?p=preview

●

●

●

●

●

●

●

What if the binary data is actually a string? For instance, we received a file with
textual data.

The build-in TextDecoder  object allows to read the value into an actual JavaScript
string, given the buffer and the encoding.

We first need to create it:

label – the encoding, utf-8 by default, but big5 , windows-1251 and
many other are also supported.

options – optional object:

fatal – boolean, if true then throw an exception for invalid (non-
decodable) characters, otherwise (default) replace them with character
\uFFFD .

ignoreBOM – boolean, if true then ignore BOM (an optional byte-order
unicode mark), rarely needed.

…And then decode:

input – BufferSource to decode.

options – optional object:

stream – true for decoding streams, when decoder is called repeatedly
with incoming chunks of data. In that case a multi-byte character may
occasionally split between chunks. This options tells TextDecoder to
memorize “unfinished” characters and decode them when the next chunk
comes.

For instance:

let decoder = new TextDecoder([label], [options]);

let str = decoder.decode([input], [options]);

let uint8Array = new Uint8Array([72, 101, 108, 108, 111]);

alert(new TextDecoder().decode(uint8Array)); // Hello

let uint8Array = new Uint8Array([228, 189, 160, 229, 165, 189]);

alert(new TextDecoder().decode(uint8Array)); // 你好

https://encoding.spec.whatwg.org/#interface-textdecoder

●

●

We can decode a part of the buffer by creating a subarray view for it:

TextEncoder  does the reverse thing – converts a string into bytes.

The syntax is:

The only encoding it supports is “utf-8”.

It has two methods:

encode(str) – returns Uint8Array from a string.

encodeInto(str, destination) – encodes str into destination that
must be Uint8Array .

ArrayBuffer and views are a part of ECMA standard, a part of JavaScript.

In the browser, there are additional higher-level objects, described in File API  , in
particular Blob .

Blob consists of an optional string type (a MIME-type usually), plus blobParts
– a sequence of other Blob objects, strings and BufferSource .

let uint8Array = new Uint8Array([0, 72, 101, 108, 108, 111, 0]);

// the string is in the middle

// create a new view over it, without copying anything

let binaryString = uint8Array.subarray(1, -1);

alert(new TextDecoder().decode(binaryString)); // Hello

TextEncoder

let encoder = new TextEncoder();

let encoder = new TextEncoder();

let uint8Array = encoder.encode("Hello");

alert(uint8Array); // 72,101,108,108,111

Blob

https://encoding.spec.whatwg.org/#interface-textencoder
https://www.w3.org/TR/FileAPI/

●

●

●

●

●

●

●

image/png blob1 blob2 str buffer...

type

Blob

blobParts

+=

The constructor syntax is:

blobParts is an array of Blob / BufferSource / String values.

options optional object:

type – Blob type, usually MIME-type, e.g. image/png ,

endings – whether to transform end-of-line to make the Blob correspond to
current OS newlines (\r\n or \n). By default "transparent" (do
nothing), but also can be "native" (transform).

For example:

We can extract Blob slices with:

byteStart – the starting byte, by default 0.

byteEnd – the last byte (exclusive, by default till the end).

contentType – the type of the new blob, by default the same as the source.

The arguments are similar to array.slice , negative numbers are allowed too.

new Blob(blobParts, options);

// create Blob from a string

let blob = new Blob(["<html>…</html>"], {type: 'text/html'});

// please note: the first argument must be an array [...]

// create Blob from a typed array and strings

let hello = new Uint8Array([72, 101, 108, 108, 111]); // "Hello" in binary form

let blob = new Blob([hello, ' ', 'world'], {type: 'text/plain'});

blob.slice([byteStart], [byteEnd], [contentType]);

 Blob objects are immutable

We can’t change data directly in a Blob , but we can slice parts of a Blob ,
create new Blob objects from them, mix them into a new Blob and so on.

This behavior is similar to JavaScript strings: we can’t change a character in a
string, but we can make a new corrected string.

A Blob can be easily used as an URL for <a> , or other tags, to show its
contents.

Thanks to type , we can also download/upload Blob objects, and the type
naturally becomes Content-Type in network requests.

Let’s start with a simple example. By clicking on a link you download a dynamically-
generated Blob with hello world contents as a file:

We can also create a link dynamically in JavaScript and simulate a click by
link.click() , then download starts automatically.

Here’s the similar code that causes user to download the dynamicallly created
Blob , without any HTML:

Blob as URL

<!-- download attribute forces the browser to download instead of navigating -->

Download

<script>

let blob = new Blob(["Hello, world!"], {type: 'text/plain'});

link.href = URL.createObjectURL(blob);

</script>

let link = document.createElement('a');

link.download = 'hello.txt';

let blob = new Blob(['Hello, world!'], {type: 'text/plain'});

link.href = URL.createObjectURL(blob);

link.click();

URL.revokeObjectURL(link.href);

URL.createObjectURL takes a Blob and creates a unique URL for it, in the
form blob:<origin>/<uuid> .

That’s what the value of link.href looks like:

The browser for each URL generated by URL.createObjectURL stores an the
URL → Blob mapping internally. So such URLs are short, but allow to access the
Blob .

A generated URL (and hence the link with it) is only valid within the current
document, while it’s open. And it allows to reference the Blob in , <a> ,
basically any other object that expects an url.

There’s a side-effect though. While there’s a mapping for a Blob , the Blob itself
resides in the memory. The browser can’t free it.

The mapping is automatically cleared on document unload, so Blob objects are
freed then. But if an app is long-living, then that doesn’t happen soon.

So if we create a URL, that Blob will hang in memory, even if not needed any
more.

URL.revokeObjectURL(url) removes the reference from the internal mapping,
thus allowing the Blob to be deleted (if there are no other references), and the
memory to be freed.

In the last example, we intend the Blob to be used only once, for instant
downloading, so we call URL.revokeObjectURL(link.href) immediately.

In the previous example with the clickable HTML-link, we don’t call
URL.revokeObjectURL(link.href) , because that would make the Blob url
invalid. After the revocation, as the mapping is removed, the URL doesn’t work any
more.

An alternative to URL.createObjectURL is to convert a Blob into a base64-
encoded string.

That encoding represents binary data as a string of ultra-safe “readable” characters
with ASCII-codes from 0 to 64. And what’s more important – we can use this
encoding in “data-urls”.

A data url  has the form data:[<mediatype>][;base64],<data> . We can
use such urls everywhere, on par with “regular” urls.

blob:https://javascript.info/1e67e00e-860d-40a5-89ae-6ab0cbee6273

Blob to base64

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs

For instance, here’s a smiley:

The browser will decode the string and show the image:

To transform a Blob into base64, we’ll use the built-in FileReader object. It can
read data from Blobs in multiple formats. In the next chapter we’ll cover it more in-
depth.

Here’s the demo of downloading a blob, now via base-64:

Both ways of making an URL of a Blob are usable. But usually
URL.createObjectURL(blob) is simpler and faster.

We can create a Blob of an image, an image part, or even make a page
screenshot. That’s handy to upload it somewhere.

Image operations are done via <canvas> element:

<img src="

let link = document.createElement('a');

link.download = 'hello.txt';

let blob = new Blob(['Hello, world!'], {type: 'text/plain'});

let reader = new FileReader();

reader.readAsDataURL(blob); // converts the blob to base64 and calls onload

reader.onload = function() {

 link.href = reader.result; // data url

 link.click();

};

●

●

URL.createObjectURL(blob)
We need to revoke them if care
about memory.

Direct access to blob, no
“encoding/decoding”

●

●

Blob to data url
No need to revoke anything.

Performance and memory
losses on big Blob objects for
encoding.

Image to blob

1. Draw an image (or its part) on canvas using canvas.drawImage  .

2. Call canvas method .toBlob(callback, format, quality)  that creates a Blob and
runs callback with it when done.

In the example below, an image is just copied, but we could cut from it, or transform
it on canvas prior to making a blob:

If we prefer async/await instead of callbacks:

For screenshotting a page, we can use a library such as
https://github.com/niklasvh/html2canvas  . What it does is just walks the page and
draws it on <canvas> . Then we can get a Blob of it the same way as above.

// take any image

let img = document.querySelector('img');

// make <canvas> of the same size

let canvas = document.createElement('canvas');

canvas.width = img.clientWidth;

canvas.height = img.clientHeight;

let context = canvas.getContext('2d');

// copy image to it (this method allows to cut image)

context.drawImage(img, 0, 0);

// we can context.rotate(), and do many other things on canvas

// toBlob is async opereation, callback is called when done

canvas.toBlob(function(blob) {

 // blob ready, download it

 let link = document.createElement('a');

 link.download = 'example.png';

 link.href = URL.createObjectURL(blob);

 link.click();

 // delete the internal blob reference, to let the browser clear memory from it

 URL.revokeObjectURL(link.href);

}, 'image/png');

let blob = await new Promise(resolve => canvasElem.toBlob(resolve, 'image/png'));

From Blob to ArrayBuffer

https://developer.mozilla.org/en-US/docs/Web/API/CanvasRenderingContext2D/drawImage
https://developer.mozilla.org/en-US/docs/Web/API/HTMLCanvasElement/toBlob
https://github.com/niklasvh/html2canvas

●

●

●

●

The Blob constructor allows to create a blob from almost anything, including any
BufferSource .

But if we need to perform low-level processing, we can get the lowest-level
ArrayBuffer from it using FileReader :

While ArrayBuffer , Uint8Array and other BufferSource are “binary data”,
a Blob  represents “binary data with type”.

That makes Blobs convenient for upload/download operations, that are so common
in the browser.

Methods that perform web-requests, such as XMLHttpRequest, fetch and so on, can
work with Blob natively, as well as with other binary types.

We can easily convert betweeen Blob and low-level binary data types:

We can make a Blob from a typed array using new Blob(...) constructor.

We can get back ArrayBuffer from a Blob using FileReader , and then
create a view over it for low-level binary processing.

A File  object inherits from Blob and is extended with filesystem-related
capabilities.

There are two ways to obtain it.

First, there’s a constructor, similar to Blob :

fileParts – is an array of Blob/BufferSource/String values.

fileName – file name string.

// get arrayBuffer from blob

let fileReader = new FileReader();

fileReader.readAsArrayBuffer(blob);

fileReader.onload = function(event) {

 let arrayBuffer = fileReader.result;

};

Summary

File and FileReader

new File(fileParts, fileName, [options])

https://www.w3.org/TR/FileAPI/#dfn-Blob
https://www.w3.org/TR/FileAPI/#dfn-file

●

●

●

●

●

options – optional object:

lastModified – the timestamp (integer date) of last modification.

Second, more often we get a file from <input type="file"> or drag’n’drop or
other browser interfaces. In that case, the file gets this information from OS.

As File inherits from Blob , File objects have the same properties, plus:

name – the file name,

lastModified – the timestamp of last modification.

That’s how we can get a File object from <input type="file"> :

 Please note:

The input may select multiple files, so input.files is an array-like object with
them. Here we have only one file, so we just take input.files[0] .

FileReader  is an object with the sole purpose of reading data from Blob (and
hence File too) objects.

It delivers the data using events, as reading from disk may take time.

The constructor:

The main methods:

readAsArrayBuffer(blob) – read the data in binary format ArrayBuffer .

<input type="file" onchange="showFile(this)">

<script>

function showFile(input) {

 let file = input.files[0];

 alert(`File name: ${file.name}`); // e.g my.png

 alert(`Last modified: ${file.lastModified}`); // e.g 1552830408824

}

</script>

FileReader

let reader = new FileReader(); // no arguments

https://www.w3.org/TR/FileAPI/#dfn-filereader

●

●

●

●

●

●

●

●

●

●

●

●

●

●

readAsText(blob, [encoding]) – read the data as a text string with the
given encoding (utf-8 by default).

readAsDataURL(blob) – read the binary data and encode it as base64 data
url.

abort() – cancel the operation.

The choice of read* method depends on which format we prefer, how we’re going
to use the data.

readAsArrayBuffer – for binary files, to do low-level binary operations. For
high-level operations, like slicing, File inherits from Blob , so we can call them
directly, without reading.

readAsText – for text files, when we’d like to get a string.

readAsDataURL – when we’d like to use this data in src for img or another
tag. There’s an alternative to reading a file for that, as discussed in chapter Blob:
URL.createObjectURL(file) .

As the reading proceeds, there are events:

loadstart – loading started.

progress – occurs during reading.

load – no errors, reading complete.

abort – abort() called.

error – error has occurred.

loadend – reading finished with either success or failure.

When the reading is finished, we can access the result as:

reader.result is the result (if successful)

reader.error is the error (if failed).

The most widely used events are for sure load and error .

Here’s an example of reading a file:

<input type="file" onchange="readFile(this)">

<script>

function readFile(input) {

 let file = input.files[0];

 let reader = new FileReader();

 reader.readAsText(file);

●

●

●

 FileReader for blobs

As mentioned in the chapter Blob, FileReader can read not just files, but any
blobs.

We can use it to convert a blob to another format:

readAsArrayBuffer(blob) – to ArrayBuffer ,

readAsText(blob, [encoding]) – to string (an alternative to
TextDecoder),

readAsDataURL(blob) – to base64 data url.

 FileReaderSync is available inside Web Workers

For Web Workers, there also exists a synchronous variant of FileReader ,
called FileReaderSync  .

Its reading methods read* do not generate events, but rather return a result,
as regular functions do.

That’s only inside a Web Worker though, because delays in synchronous calls,
that are possible while reading from files, in Web Workers are less important.
They do not affect the page.

File objects inherit from Blob .

In addition to Blob methods and properties, File objects also have name and
lastModified properties, plus the internal ability to read from filesystem. We
usually get File objects from user input, like <input> or Drag’n’Drop events
(ondragend).

FileReader objects can read from a file or a blob, in one of three formats:

 reader.onload = function() {

 console.log(reader.result);

 };

 reader.onerror = function() {

 console.log(reader.error);

 };

}

</script>

Summary

https://www.w3.org/TR/FileAPI/#FileReaderSync

●

●

●

●

●

●

●

●

●

String (readAsText).

ArrayBuffer (readAsArrayBuffer).

Data url, base-64 encoded (readAsDataURL).

In many cases though, we don’t have to read the file contents. Just as we did with
blobs, we can create a short url with URL.createObjectURL(file) and assign
it to <a> or . This way the file can be downloaded or shown up as an image,
as a part of canvas etc.

And if we’re going to send a File over a network, that’s also easy: network API like
XMLHttpRequest or fetch natively accepts File objects.

JavaScript can send network requests to the server and load new information
whenever is needed.

For example, we can use a network request to:

Submit an order,

Load user information,

Receive latest updates from the server,

…etc.

…And all of that without reloading the page!

There’s an umbrella term “AJAX” (abbreviated Asynchronous JavaScript And XML)
for network requests from JavaScript. We don’t have to use XML though: the term
comes from old times, that’s why that word is there. You may have heard that term
already.

There are multiple ways to send a network request and get information from the
server.

The fetch() method is modern and versatile, so we’ll start with it. It’s not
supported by old browsers (can be polyfilled), but very well supported among the
modern ones.

The basic syntax is:

url – the URL to access.

options – optional parameters: method, headers etc.

Network requests
Fetch

let promise = fetch(url, [options])

●

●

●

●

●

●

●

Without options , that is a simple GET request, downloading the contents of the
url .

The browser starts the request right away and returns a promise that the calling code
should use to get the result.

Getting a response is usually a two-stage process.

First, the promise , returned by fetch , resolves with an object of the built-in
Response  class as soon as the server responds with headers.

At this stage we can check HTTP status, to see whether it is successful or not, check
headers, but don’t have the body yet.

The promise rejects if the fetch was unable to make HTTP-request, e.g. network
problems, or there’s no such site. Abnormal HTTP-statuses, such as 404 or 500 do
not cause an error.

We can see HTTP-status in response properties:

status – HTTP status code, e.g. 200.

ok – boolean, true if the HTTP status code is 200-299.

For example:

Second, to get the response body, we need to use an additional method call.

Response provides multiple promise-based methods to access the body in various
formats:

response.text() – read the response and return as text,

response.json() – parse the response as JSON,

response.formData() – return the response as FormData object
(explained in the next chapter),

response.blob() – return the response as Blob (binary data with type),

response.arrayBuffer() – return the response as ArrayBuffer (low-level
representaion of binary data),

let response = await fetch(url);

if (response.ok) { // if HTTP-status is 200-299

 // get the response body (the method explained below)

 let json = await response.json();

} else {

 alert("HTTP-Error: " + response.status);

}

https://fetch.spec.whatwg.org/#response-class

● additionally, response.body is a ReadableStream  object, it allows to read
the body chunk-by-chunk, we’ll see an example later.

For instance, let’s get a JSON-object with latest commits from GitHub:

Or, the same without await , using pure promises syntax:

To get the response text, await response.text() instead of .json() :

As a show-case for reading in binary format, let’s fetch and show a logo image of
“fetch” specification  (see chapter Blob for details about operations on Blob):

let url = 'https://api.github.com/repos/javascript-tutorial/en.javascript.info/commi

let response = await fetch(url);

let commits = await response.json(); // read response body and parse as JSON

alert(commits[0].author.login);

fetch('https://api.github.com/repos/javascript-tutorial/en.javascript.info/commits'

 .then(response => response.json())

 .then(commits => alert(commits[0].author.login));

let response = await fetch('https://api.github.com/repos/javascript-tutorial/en.java

let text = await response.text(); // read response body as text

alert(text.slice(0, 80) + '...');

let response = await fetch('/article/fetch/logo-fetch.svg');

let blob = await response.blob(); // download as Blob object

// create for it

let img = document.createElement('img');

img.style = 'position:fixed;top:10px;left:10px;width:100px';

document.body.append(img);

// show it

img.src = URL.createObjectURL(blob);

setTimeout(() => { // hide after three seconds

 img.remove();

https://streams.spec.whatwg.org/#rs-class
https://fetch.spec.whatwg.org/

⚠ Important:

We can choose only one body-reading method.

If we’ve already got the response with response.text() , then
response.json() won’t work, as the body content has already been
processed.

The response headers are available in a Map-like headers object in
response.headers .

It’s not exactly a Map, but it has similar methods to get individual headers by name
or iterate over them:

To set a request header in fetch , we can use the headers option. It has an
object with outgoing headers, like this:

 URL.revokeObjectURL(img.src);

}, 3000);

let text = await response.text(); // response body consumed

let parsed = await response.json(); // fails (already consumed)

Response headers

let response = await fetch('https://api.github.com/repos/javascript-tutorial/en.java

// get one header

alert(response.headers.get('Content-Type')); // application/json; charset=utf-8

// iterate over all headers

for (let [key, value] of response.headers) {

 alert(`${key} = ${value}`);

}

Request headers

let response = fetch(protectedUrl, {

 headers: {

 Authentication: 'secret'

 }

});

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

…But there’s a list of forbidden HTTP headers  that we can’t set:

Accept-Charset , Accept-Encoding

Access-Control-Request-Headers

Access-Control-Request-Method

Connection

Content-Length

Cookie , Cookie2

Date

DNT

Expect

Host

Keep-Alive

Origin

Referer

TE

Trailer

Transfer-Encoding

Upgrade

Via

Proxy-*

Sec-*

These headers ensure proper and safe HTTP, so they are controlled exclusively by
the browser.

To make a POST request, or a request with another method, we need to use
fetch options:

method – HTTP-method, e.g. POST ,

body – the request body, one of:

a string (e.g. JSON-encoded),

FormData object, to submit the data as form/multipart ,

Blob / BufferSource to send binary data,

URLSearchParams, to submit the data in x-www-form-urlencoded
encoding, rarely used.

POST requests

https://fetch.spec.whatwg.org/#forbidden-header-name

The JSON format is used most of the time.

For example, this code submits user object as JSON:

Please note, if the request body is a string, then Content-Type header is set to
text/plain;charset=UTF-8 by default.

But, as we’re going to send JSON, we use headers option to send
application/json instead, the correct Content-Type for JSON-encoded
data.

We can also submit binary data with fetch using Blob or BufferSource
objects.

In this example, there’s a <canvas> where we can draw by moving a mouse over
it. A click on the “submit” button sends the image to server:

let user = {

 name: 'John',

 surname: 'Smith'

};

let response = await fetch('/article/fetch/post/user', {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json;charset=utf-8'

 },

 body: JSON.stringify(user)

});

let result = await response.json();

alert(result.message);

Sending an image

<body style="margin:0">

 <canvas id="canvasElem" width="100" height="80" style="border:1px solid"></canvas>

 <input type="button" value="Submit" onclick="submit()">

 <script>

 canvasElem.onmousemove = function(e) {

 let ctx = canvasElem.getContext('2d');

 ctx.lineTo(e.clientX, e.clientY);

 ctx.stroke();

 };

 async function submit() {

Please note, here we don’t set Content-Type header manually, because a Blob
object has a built-in type (here image/png , as generated by toBlob). For Blob
objects that type becomes the value of Content-Type .

The submit() function can be rewritten without async/await like this:

A typical fetch request consists of two await calls:

Or, without await :

 let blob = await new Promise(resolve => canvasElem.toBlob(resolve, 'image/png

 let response = await fetch('/article/fetch/post/image', {

 method: 'POST',

 body: blob

 });

 // the server responds with confirmation and the image size

 let result = await response.json();

 alert(result.message);

 }

 </script>

</body>

 Submit

function submit() {

 canvasElem.toBlob(function(blob) {

 fetch('/article/fetch/post/image', {

 method: 'POST',

 body: blob

 })

 .then(response => response.json())

 .then(result => alert(JSON.stringify(result, null, 2)))

 }, 'image/png');

}

Summary

let response = await fetch(url, options); // resolves with response headers

let result = await response.json(); // read body as json

●

●

●

●

●

●

●

●

●

●

●

Response properties:

response.status – HTTP code of the response,

response.ok – true is the status is 200-299.

response.headers – Map-like object with HTTP headers.

Methods to get response body:

response.text() – return the response as text,

response.json() – parse the response as JSON object,

response.formData() – return the response as FormData object
(form/multipart encoding, see the next chapter),

response.blob() – return the response as Blob (binary data with type),

response.arrayBuffer() – return the response as ArrayBuffer (low-level
binary data),

Fetch options so far:

method – HTTP-method,

headers – an object with request headers (not any header is allowed),

body – the data to send (request body) as string , FormData ,
BufferSource , Blob or UrlSearchParams object.

In the next chapters we’ll see more options and use cases of fetch .

Fetch users from GitHub

Create an async function getUsers(names) , that gets an array of GitHub logins,
fetches the users from GitHub and returns an array of GitHub users.

The GitHub url with user information for the given USERNAME is:
https://api.github.com/users/USERNAME .

There’s a test example in the sandbox.

Important details:

fetch(url, options)

 .then(response => response.json())

 .then(result => /* process result */)

✔ Tasks

1. There should be one fetch request per user.

2. Requests shouldn’t wait for each other. So that the data arrives as soon as
possible.

3. If any request fails, or if there’s no such user, the function should return null
in the resulting array.

Open a sandbox with tests. 

To solution

This chapter is about sending HTML forms: with or without files, with additional fields
and so on.

FormData  objects can help with that. As you might have guessed, it’s the object
to represent HTML form data.

The constructor is:

If HTML form element is provided, it automatically captures its fields.

The special thing about FormData is that network methods, such as fetch , can
accept a FormData object as a body. It’s encoded and sent out with Content-
Type: form/multipart .

From the server point of view, that looks like a usual form submission.

Let’s send a simple form first.

As you can see, that’s almost one-liner:

FormData

let formData = new FormData([form]);

Sending a simple form

<form id="formElem">

 <input type="text" name="name" value="John">

 <input type="text" name="surname" value="Smith">

 <input type="submit">

</form>

<script>

 formElem.onsubmit = async (e) => {

https://plnkr.co/edit/uNRx6QM6OFmGUqEgxYyv?p=preview
https://xhr.spec.whatwg.org/#interface-formdata

●

●

●

●

●

●

●

In this example, the server code is not presented, as it’s beyound our scope. The
server accepts the POST request and replies “User saved”.

We can modify fields in FormData with methods:

formData.append(name, value) – add a form field with the given name
and value ,

formData.append(name, blob, fileName) – add a field as if it were
<input type="file"> , the third argument fileName sets file name (not
form field name), as it were a name of the file in user’s filesystem,

formData.delete(name) – remove the field with the given name ,

formData.get(name) – get the value of the field with the given name ,

formData.has(name) – if there exists a field with the given name , returns
true , otherwise false

A form is technically allowed to have many fields with the same name , so multiple
calls to append add more same-named fields.

There’s also method set , with the same syntax as append . The difference is that
.set removes all fields with the given name , and then appends a new field. So it
makes sure there’s only one field with such name , the rest is just like append :

formData.set(name, value) ,

formData.set(name, blob, fileName) .

Also we can iterate over formData fields using for..of loop:

 e.preventDefault();

 let response = await fetch('/article/formdata/post/user', {

 method: 'POST',

 body: new FormData(formElem)

 });

 let result = await response.json();

 alert(result.message);

 };

</script>

John Smith Submit

FormData Methods

The form is always sent as Content-Type: form/multipart , this encoding
allows to send files. So, <input type="file"> fields are sent also, similar to a
usual form submission.

Here’s an example with such form:

As we’ve seen in the chapter Fetch, it’s easy to send dynamically generated binary
data e.g. an image, as Blob . We can supply it directly as fetch parameter
body .

let formData = new FormData();

formData.append('key1', 'value1');

formData.append('key2', 'value2');

// List key/value pairs

for(let [name, value] of formData) {

 alert(`${name} = ${value}`); // key1=value1, then key2=value2

}

Sending a form with a file

<form id="formElem">

 <input type="text" name="firstName" value="John">

 Picture: <input type="file" name="picture" accept="image/*">

 <input type="submit">

</form>

<script>

 formElem.onsubmit = async (e) => {

 e.preventDefault();

 let response = await fetch('/article/formdata/post/user-avatar', {

 method: 'POST',

 body: new FormData(formElem)

 });

 let result = await response.json();

 alert(result.message);

 };

</script>

John Picture: No file chosenChoose File Submit

Sending a form with Blob data

In practice though, it’s often convenient to send an image not separately, but as a
part of the form, with additional fields, such as “name” and other metadata.

Also, servers are usually more suited to accept multipart-encoded forms, rather than
raw binary data.

This example submits an image from <canvas> , along with some other fields, as a
form, using FormData :

Please note how the image Blob is added:

<body style="margin:0">

 <canvas id="canvasElem" width="100" height="80" style="border:1px solid"></canvas>

 <input type="button" value="Submit" onclick="submit()">

 <script>

 canvasElem.onmousemove = function(e) {

 let ctx = canvasElem.getContext('2d');

 ctx.lineTo(e.clientX, e.clientY);

 ctx.stroke();

 };

 async function submit() {

 let imageBlob = await new Promise(resolve => canvasElem.toBlob(resolve, 'image

 let formData = new FormData();

 formData.append("firstName", "John");

 formData.append("image", imageBlob, "image.png");

 let response = await fetch('/article/formdata/post/image-form', {

 method: 'POST',

 body: formData

 });

 let result = await response.json();

 alert(result.message);

 }

 </script>

</body>

 Submit

formData.append("image", imageBlob, "image.png");

●

●

●

●

●

●

●

That’s same as if there were <input type="file" name="image"> in the
form, and the visitor submitted a file named "image.png" (3rd argument) with the
data imageBlob (2nd argument) from their filesystem.

The server reads form data and the file, as if it were a regular form submission.

FormData  objects are used to capture HTML form and submit it using fetch or
another network method.

We can either create new FormData(form) from an HTML form, or create a
object without a form at all, and then append fields with methods:

formData.append(name, value)

formData.append(name, blob, fileName)

formData.set(name, value)

formData.set(name, blob, fileName)

Let’s note two peculiarities here:

1. The set method removes fields with the same name, append doesn’t. That’s
the only difference between them.

2. To send a file, 3-argument syntax is needed, the last argument is a file name, that
normally is taken from user filesystem for <input type="file"> .

Other methods are:

formData.delete(name)

formData.get(name)

formData.has(name)

That’s it!

The fetch method allows to track download progress.

Please note: there’s currently no way for fetch to track upload progress. For that
purpose, please use XMLHttpRequest, we’ll cover it later.

To track download progress, we can use response.body property. It’s
ReadableStream – a special object that provides body chunk-by-chunk, as it
comes. Readable streams are described in the Streams API  specification.

Summary

Fetch: Download progress

https://xhr.spec.whatwg.org/#interface-formdata
https://streams.spec.whatwg.org/#rs-class

●

●

Unlike response.text() , response.json() and other methods,
response.body gives full control over the reading process, and we can count
how much is consumed at any moment.

Here’s the sketch of code that reads the reponse from response.body :

The result of await reader.read() call is an object with two properties:

done – true when the reading is complete, otherwise false .

value – a typed array of bytes: Uint8Array .

 Please note:

Streams API also describes asynchronous iteration over ReadableStream
with for await..of loop, but it’s not yet widely supported (see browser
issues ), so we use while loop.

We receive response chunks in the loop, until the loading finishes, that is: until
done becomes true .

To log the progress, we just need for every received fragment value to add its
length to the counter.

Here’s the full working example that gets the response and logs the progress in
console, more explanations to follow:

// instead of response.json() and other methods

const reader = response.body.getReader();

// infinite loop while the body is downloading

while(true) {

 // done is true for the last chunk

 // value is Uint8Array of the chunk bytes

 const {done, value} = await reader.read();

 if (done) {

 break;

 }

 console.log(`Received ${value.length} bytes`)

}

// Step 1: start the fetch and obtain a reader

let response = await fetch('https://api.github.com/repos/javascript-tutorial/en.java

const reader = response.body.getReader();

https://github.com/whatwg/streams/issues/778#issuecomment-461341033

Let’s explain that step-by-step:

1. We perform fetch as usual, but instead of calling response.json() , we
obtain a stream reader response.body.getReader() .

Please note, we can’t use both these methods to read the same response: either
use a reader or a response method to get the result.

2. Prior to reading, we can figure out the full response length from the Content-
Length header.

It may be absent for cross-origin requests (see chapter Fetch: Cross-Origin
Requests) and, well, technically a server doesn’t have to set it. But usually it’s at
place.

3. Call await reader.read() until it’s done.

// Step 2: get total length

const contentLength = +response.headers.get('Content-Length');

// Step 3: read the data

let receivedLength = 0; // received that many bytes at the moment

let chunks = []; // array of received binary chunks (comprises the body)

while(true) {

 const {done, value} = await reader.read();

 if (done) {

 break;

 }

 chunks.push(value);

 receivedLength += value.length;

 console.log(`Received ${receivedLength} of ${contentLength}`)

}

// Step 4: concatenate chunks into single Uint8Array

let chunksAll = new Uint8Array(receivedLength); // (4.1)

let position = 0;

for(let chunk of chunks) {

 chunksAll.set(chunk, position); // (4.2)

 position += chunk.length;

}

// Step 5: decode into a string

let result = new TextDecoder("utf-8").decode(chunksAll);

// We're done!

let commits = JSON.parse(result);

alert(commits[0].author.login);

●

●

We gather response chunks in the array chunks . That’s important, because
after the response is consumed, we won’t be able to “re-read” it using
response.json() or another way (you can try, there’ll be an error).

4. At the end, we have chunks – an array of Uint8Array byte chunks. We need
to join them into a single result. Unfortunately, there’s no single method that
concatenates those, so there’s some code to do that:

1. We create chunksAll = new Uint8Array(receivedLength) – a
same-typed array with the combined length.

2. Then use .set(chunk, position) method to copy each chunk one
after another in it.

5. We have the result in chunksAll . It’s a byte array though, not a string.

To create a string, we need to interpret these bytes. The built-in TextDecoder does
exactly that. Then we can JSON.parse it, if necessary.

What if we need binary content instead of a string? That’s even simpler. Replace
steps 4 and 5 with a single line that creates a Blob from all chunks:

At we end we have the result (as a string or a blob, whatever is convenient), and
progress-tracking in the process.

Once again, please note, that’s not for upload progress (no way now with fetch),
only for download progress.

As we know, fetch returns a promise. And JavaScript generally has no concept of
“aborting” a promise. So how can we abort a fetch ?

There’s a special built-in object for such purposes: AbortController , that can
be used to abort not only fetch , but other asynchronous tasks as well.

The usage is pretty simple:

Step 1: create a controller:

A controller is an extremely simple object.

It has a single method abort() , and a single property signal .

let blob = new Blob(chunks);

Fetch: Abort

let controller = new AbortController();

●

●

●

●

●

When abort() is called:

abort event triggers on controller.signal

controller.signal.aborted property becomes true .

All parties interested to learn about abort() call set listeners on
controller.signal to track it.

Like this (without fetch yet):

Step 2: pass the signal property to fetch option:

The fetch method knows how to work with AbortController , it listens to
abort on signal .

Step 3: to abort, call controller.abort() :

We’re done: fetch gets the event from signal and aborts the request.

When a fetch is aborted, its promise rejects with an error AbortError , so we
should handle it, e.g. in try..catch :

let controller = new AbortController();

let signal = controller.signal;

// triggers when controller.abort() is called

signal.addEventListener('abort', () => alert("abort!"));

controller.abort(); // abort!

alert(signal.aborted); // true

let controller = new AbortController();

fetch(url, {

 signal: controller.signal

});

controller.abort();

// abort in 1 second

let controller = new AbortController();

setTimeout(() => controller.abort(), 1000);

try {

AbortController is scalable, it allows to cancel multiple fetches at once.

For instance, here we fetch many urls in parallel, and the controller aborts them
all:

If we have our own asynchronous jobs, different from fetch , we can use a single
AbortController to stop those, together with fetches.

We just need to listen to its abort event:

 let response = await fetch('/article/fetch-abort/demo/hang', {

 signal: controller.signal

 });

} catch(err) {

 if (err.name == 'AbortError') { // handle abort()

 alert("Aborted!");

 } else {

 throw err;

 }

}

let urls = [...]; // a list of urls to fetch in parallel

let controller = new AbortController();

let fetchJobs = urls.map(url => fetch(url, {

 signal: controller.signal

}));

let results = await Promise.all(fetchJobs);

// if controller.abort() is called from elsewhere,

// it aborts all fetches

let urls = [...];

let controller = new AbortController();

let ourJob = new Promise((resolve, reject) => { // our task

 ...

 controller.signal.addEventListener('abort', reject);

});

let fetchJobs = urls.map(url => fetch(url, { // fetches

 signal: controller.signal

}));

// Wait for fetches and our task in parallel

let results = await Promise.all([...fetchJobs, ourJob]);

So AbortController is not only for fetch , it’s a universal object to abort
asynchronous tasks, and fetch has built-in integration with it.

If we send a fetch request to another web-site, it will probably fail.

For instance, let’s try fetching http://example.com :

Fetch fails, as expected.

The core concept here is origin – a domain/port/protocol triplet.

Cross-origin requests – those sent to another domain (even a subdomain) or
protocol or port – require special headers from the remote side.

That policy is called “CORS”: Cross-Origin Resource Sharing.

CORS exists to protect the internet from evil hackers.

Seriously. Let’s make a very brief historical digression.

For many years a script from one site could not access the content of another
site.

That simple, yet powerful rule was a foundation of the internet security. E.g. an evil
script from website hacker.com could not access user’s mailbox at website
gmail.com . People felt safe.

JavaScript also did not have any special methods to perform network requests at
that time. It was a toy language to decorate a web page.

But web developers demanded more power. A variety of tricks were invented to work
around the limitation and make requests to other websites.

Using forms

// if controller.abort() is called from elsewhere,

// it aborts all fetches and ourJob

Fetch: Cross-Origin Requests

try {

 await fetch('http://example.com');

} catch(err) {

 alert(err); // Failed to fetch

}

Why is CORS needed? A brief history

One way to communicate with another server was to submit a <form> there.
People submitted it into <iframe> , just to stay on the current page, like this:

So, it was possible to make a GET/POST request to another site, even without
networking methods, as forms can send data anywhere. But as it’s forbidden to
access the content of an <iframe> from another site, it wasn’t possible to read the
response.

To be precise, there were actually tricks for that, they required special scripts at both
the iframe and the page. So the communication with the iframe was technically
possible. Right now there’s no point to go into details, let these dinosaurs rest in
peace.

Using scripts
Another trick was to use a script tag. A script could have any src , with any
domain, like <script src="http://another.com/…"> . It’s possible to
execute a script from any website.

If a website, e.g. another.com intended to expose data for this kind of access,
then a so-called “JSONP (JSON with padding)” protocol was used.

Here’s how it worked.

Let’s say we, at our site, need to get the data from http://another.com , such
as the weather:

1. First, in advance, we declare a global function to accept the data, e.g.
gotWeather .

2. Then we make a <script> tag with
src="http://another.com/weather.json?callback=gotWeather" ,
using the name of our function as the callback URL-parameter.

<!-- form target -->

<iframe name="iframe"></iframe>

<!-- a form could be dynamically generated and submited by JavaScript -->

<form target="iframe" method="POST" action="http://another.com/…">

 ...

</form>

// 1. Declare the function to process the weather data

function gotWeather({ temperature, humidity }) {

 alert(`temperature: ${temperature}, humidity: ${humidity}`);

}

●

●

●

●

3. The remote server another.com dynamically generates a script that calls
gotWeather(...) with the data it wants us to receive.

4. When the remote script loads and executes, gotWeather runs, and, as it’s our
function, we have the data.

That works, and doesn’t violate security, because both sides agreed to pass the data
this way. And, when both sides agree, it’s definitely not a hack. There are still
services that provide such access, as it works even for very old browsers.

After a while, networking methods appeared in browser JavaScript.

At first, cross-origin requests were forbidden. But as a result of long discussions,
cross-origin requests were allowed, but with any new capabilities requiring an explicit
allowance by the server, expressed in special headers.

There are two types of cross-origin requests:

1. Simple requests.

2. All the others.

Simple Requests are, well, simpler to make, so let’s start with them.

A simple request  is a request that satisfies two conditions:

1. Simple method  : GET, POST or HEAD

2. Simple headers  – the only allowed custom headers are:

Accept ,

Accept-Language ,

Content-Language ,

Content-Type with the value application/x-www-form-
urlencoded , multipart/form-data or text/plain .

let script = document.createElement('script');

script.src = `http://another.com/weather.json?callback=gotWeather`;

document.body.append(script);

// The expected answer from the server looks like this:

gotWeather({

 temperature: 25,

 humidity: 78

});

Simple requests

http://www.w3.org/TR/cors/#terminology
http://www.w3.org/TR/cors/#simple-method
http://www.w3.org/TR/cors/#simple-header

Any other request is considered “non-simple”. For instance, a request with PUT
method or with an API-Key HTTP-header does not fit the limitations.

The essential difference is that a “simple request” can be made with a
<form> or a <script> , without any special methods.

So, even a very old server should be ready to accept a simple request.

Contrary to that, requests with non-standard headers or e.g. method DELETE can’t
be created this way. For a long time JavaScript was unable to do such requests. So
an old server may assume that such requests come from a privileged source,
“because a webpage is unable to send them”.

When we try to make a non-simple request, the browser sends a special “preflight”
request that asks the server – does it agree to accept such cross-origin requests, or
not?

And, unless the server explicitly confirms that with headers, a non-simple request is
not sent.

Now we’ll go into details.

If a request is cross-origin, the browser always adds Origin header to it.

For instance, if we request https://anywhere.com/request from
https://javascript.info/page , the headers will be like:

As you can see, Origin header contains exactly the origin (domain/protocol/port),
without a path.

The server can inspect the Origin and, if it agrees to accept such a request, adds
a special header Access-Control-Allow-Origin to the response. That
header should contain the allowed origin (in our case
https://javascript.info), or a star * . Then the response is successful,
otherwise an error.

The browser plays the role of a trusted mediator here:

1. It ensures that the correct Origin is sent with a cross-origin request.

2. It checks for permitting Access-Control-Allow-Origin in the response, if it
exists, then JavaScript is allowed to access the response, otherwise it fails with an

CORS for simple requests

GET /request

Host: anywhere.com

Origin: https://javascript.info

...

●

●

●

●

●

●

error.

JavaScript Browser Server

Origin: https://javascript.info

HTTP-request

fetch()

HTTP-response

Access-Control-Allow-Origin:
* OR https://javascript.info

if the header allows, then success,

otherwise fail

Here’s an example of a permissive server response:

For cross-origin request, by default JavaScript may only access so-called “simple”
response headers:

Cache-Control

Content-Language

Content-Type

Expires

Last-Modified

Pragma

Accessing any other response header causes an error.

200 OK

Content-Type:text/html; charset=UTF-8

Access-Control-Allow-Origin: https://javascript.info

Response headers

●

●

 Please note:

There’s no Content-Length header in the list!

This header contains the full response length. So, if we’re downloading
something and would like to track the percentage of progress, then an additional
permission is required to access that header (see below).

To grant JavaScript access to any other response header, the server must send
Access-Control-Expose-Headers header. It contains a comma-separated list
of non-simple header names that should be made accessible.

For example:

With such Access-Control-Expose-Headers header, the script is allowed to
read Content-Length and API-Key headers of the response.

We can use any HTTP-method: not just GET/POST , but also PATCH , DELETE and
others.

Some time ago no one could even imagine that a webpage could make such
requests. So there may still exist webservices that treat a non-standard method as a
signal: “That’s not a browser”. They can take it into account when checking access
rights.

So, to avoid misunderstandings, any “non-simple” request – that couldn’t be done in
the old times, the browser does not make such requests right away. Before it sends
a preliminary, so-called “preflight” request, asking for permission.

A preflight request uses method OPTIONS , no body and two headers:

Access-Control-Request-Method header has the method of the non-
simple request.

Access-Control-Request-Headers header provides a comma-separated
list of its non-simple HTTP-headers.

200 OK

Content-Type:text/html; charset=UTF-8

Content-Length: 12345

API-Key: 2c9de507f2c54aa1

Access-Control-Allow-Origin: https://javascript.info

Access-Control-Expose-Headers: Content-Length,API-Key

“Non-simple” requests

●

●

●

If the server agrees to serve the requests, then it should respond with empty body,
status 200 and headers:

Access-Control-Allow-Methods must have the allowed method.

Access-Control-Allow-Headers must have a list of allowed headers.

Additionally, the header Access-Control-Max-Age may specify a number of
seconds to cache the permissions. So the browser won’t have to send a preflight
for subsequent requests that satisfy given permissions.

JavaScript Browser Server

fetch()

OPTIONS

Origin
Access-Control-Request-Method
Access-Control-Request-Headers

200 OK

Access-Control-Allow-Origin

Main HTTP-response

otherwise error

if allowed: success,

Origin

Main HTTP-request

preflight

if allowed

1

2

3

4

Access-Control-Allow-Method
Access-Control-Allow-Headers

Access-Control-Max-Age

Let’s see how it works step-by-step on example, for a cross-origin PATCH request
(this method is often used to update data):

let response = await fetch('https://site.com/service.json', {

 method: 'PATCH',

 headers: {

 'Content-Type': 'application/json',

 'API-Key': 'secret'

●

●

●

●

●

●

●

●

●

●

●

There are three reasons why the request is not simple (one is enough):

Method PATCH

Content-Type is not one of: application/x-www-form-urlencoded ,
multipart/form-data , text/plain .

“Non-simple” API-Key header.

Step 1 (preflight request)
Prior to sending such request, the browser, on its own, sends a preflight request that
looks like this:

Method: OPTIONS .

The path – exactly the same as the main request: /service.json .

Cross-origin special headers:

Origin – the source origin.

Access-Control-Request-Method – requested method.

Access-Control-Request-Headers – a comma-separated list of “non-
simple” headers.

Step 2 (preflight response)
The server should respond with status 200 and headers:

Access-Control-Allow-Methods: PATCH

Access-Control-Allow-Headers: Content-Type,API-Key .

That allows future communication, otherwise an error is triggered.

If the server expects other methods and headers in the future, it makes sense to
allow them in advance by adding to the list:

 }

});

OPTIONS /service.json

Host: site.com

Origin: https://javascript.info

Access-Control-Request-Method: PATCH

Access-Control-Request-Headers: Content-Type,API-Key

200 OK

Access-Control-Allow-Methods: PUT,PATCH,DELETE

Access-Control-Allow-Headers: API-Key,Content-Type,If-Modified-Since,Cache-Control

Access-Control-Max-Age: 86400

Now the browser can see that PATCH is in Access-Control-Allow-Methods
and Content-Type,API-Key are in the list Access-Control-Allow-
Headers , so it sends out the main request.

Besides, the preflight response is cached for time, specified by Access-Control-
Max-Age header (86400 seconds, one day), so subsequent requests will not cause
a preflight. Assuming that they fit the cached allowances, they will be sent directly.

Step 3 (actual request)
When the preflight is successful, the browser now makes the main request. The
algorithm here is the same as for simple requests.

The main request has Origin header (because it’s cross-origin):

Step 4 (actual response)
The server should not forget to add Access-Control-Allow-Origin to the
main response. A successful preflight does not relieve from that:

Then JavaScript is able to read the main server response.

 Please note:

Preflight request occurs “behind the scenes”, it’s invisible to JavaScript.

JavaScript only gets the response to the main request or an error if there’s no
server permission.

A cross-origin request by default does not bring any credentials (cookies or HTTP
authentication).

That’s uncommon for HTTP-requests. Usually, a request to http://site.com is
accompanied by all cookies from that domain. But cross-origin requests made by
JavaScript methods are an exception.

PATCH /service.json

Host: site.com

Content-Type: application/json

API-Key: secret

Origin: https://javascript.info

Access-Control-Allow-Origin: https://javascript.info

Credentials

●

●

For example, fetch('http://another.com') does not send any cookies,
even those (!) that belong to another.com domain.

Why?

That’s because a request with credentials is much more powerful than without them.
If allowed, it grants JavaScript the full power to act on behalf of the user and access
sensitive information using their credentials.

Does the server really trust the script that much? Then it must explicitly allow
requests with credentials with an additional header.

To send credentials in fetch , we need to add the option credentials:
"include" , like this:

Now fetch sends cookies originating from another.com without request to that
site.

If the server agrees to accept the request with credentials, it should add a header
Access-Control-Allow-Credentials: true to the response, in addition to
Access-Control-Allow-Origin .

For example:

Please note: Access-Control-Allow-Origin is prohibited from using a star *
for requests with credentials. Like shown above, it must provide the exact origin
there. That’s an additional safety measure, to ensure that the server really knows
who it trusts to make such requests.

From the browser point of view, there are two kinds of cross-origin requests: “simple”
and all the others.

Simple requests  must satisfy the following conditions:

Method: GET, POST or HEAD.

Headers – we can set only:

fetch('http://another.com', {

 credentials: "include"

});

200 OK

Access-Control-Allow-Origin: https://javascript.info

Access-Control-Allow-Credentials: true

Summary

http://www.w3.org/TR/cors/#terminology

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Accept

Accept-Language

Content-Language

Content-Type to the value application/x-www-form-urlencoded ,
multipart/form-data or text/plain .

The essential difference is that simple requests were doable since ancient times
using <form> or <script> tags, while non-simple were impossible for browsers
for a long time.

So, the practical difference is that simple requests are sent right away, with Origin
header, while for the other ones the browser makes a preliminary “preflight” request,
asking for permission.

For simple requests:

→ The browser sends Origin header with the origin.

← For requests without credentials (not sent default), the server should set:

Access-Control-Allow-Origin to * or same value as Origin

← For requests with credentials, the server should set:

Access-Control-Allow-Origin to same value as Origin

Access-Control-Allow-Credentials to true

Additionally, to grant JavaScript access to any response headers except Cache-
Control , Content-Language , Content-Type , Expires , Last-
Modified or Pragma , the server should list the allowed ones in Access-
Control-Expose-Headers header.

For non-simple requests, a preliminary “preflight” request is issued before the
requested one:

→ The browser sends OPTIONS request to the same URL, with headers:

Access-Control-Request-Method has requested method.

Access-Control-Request-Headers lists non-simple requested headers.

← The server should respond with status 200 and headers:

Access-Control-Allow-Methods with a list of allowed methods,

Access-Control-Allow-Headers with a list of allowed headers,

Access-Control-Max-Age with a number of seconds to cache
permissions.

Then the actual request is sent, the previous “simple” scheme is applied.

✔ Tasks

Why do we need Origin?
importance: 5

As you probably know, there’s HTTP-header Referer , that usually contains an url
of the page which initiated a network request.

For instance, when fetching http://google.com from
http://javascript.info/some/url , the headers look like this:

As you can see, both Referer and Origin are present.

The questions:

1. Why Origin is needed, if Referer has even more information?

2. Is it possible that there’s no Referer or Origin , or is it incorrect?

To solution

So far, we know quite a bit about fetch .

Let’s see the rest of API, to cover all its abilities.

 Please note:

Please note: most of these options are used rarely. You may skip this chapter
and still use fetch well.

Still, it’s good to know what fetch can do, so if the need arises, you can return
and read the details.

Here’s the full list of all possible fetch options with their default values
(alternatives in comments):

Accept: */*

Accept-Charset: utf-8

Accept-Encoding: gzip,deflate,sdch

Connection: keep-alive

Host: google.com

Origin: http://javascript.info

Referer: http://javascript.info/some/url

Fetch API

An impressive list, right?

We fully covered method , headers and body in the chapter Fetch.

The signal option is covered in Fetch: Abort.

Now let’s explore the rest of capabilities.

These options govern how fetch sets HTTP Referer header.

Usually that header is set automatically and contains the url of the page that made
the request. In most scenarios, it’s not important at all, sometimes, for security
purposes, it makes sense to remove or shorten it.

The referrer option allows to set any Referer within the current origin) or
remove it.

To send no referer, set an empty string:

To set another url within the current origin:

let promise = fetch(url, {

 method: "GET", // POST, PUT, DELETE, etc.

 headers: {

 // the content type header value is usually auto-set

 // depending on the request body

 "Content-Type": "text/plain;charset=UTF-8"

 },

 body: undefined // string, FormData, Blob, BufferSource, or URLSearchParams

 referrer: "about:client", // or "" to send no Referer header,

 // or an url from the current origin

 referrerPolicy: "no-referrer-when-downgrade", // no-referrer, origin, same-origin

 mode: "cors", // same-origin, no-cors

 credentials: "same-origin", // omit, include

 cache: "default", // no-store, reload, no-cache, force-cache, or only-if-cached

 redirect: "follow", // manual, error

 integrity: "", // a hash, like "sha256-abcdef1234567890"

 keepalive: false, // true

 signal: undefined, // AbortController to abort request

 window: window // null

});

referrer, referrerPolicy

fetch('/page', {

 referrer: "" // no Referer header

});

●

●

●

●

●

●

●

●

The referrerPolicy option sets general rules for Referer .

Requests are split into 3 types:

1. Request to the same origin.

2. Request to another origin.

3. Request from HTTPS to HTTP (from safe to unsafe protocol).

Unlike referrer option that allows to set the exact Referer value,
referrerPolicy tells the browser general rules for each request type.

Possible values are described in the Referrer Policy specification  :

"no-referrer-when-downgrade" – the default value: full Referer is sent
always, unless we send a request from HTTPS to HTTP (to less secure protocol).

"no-referrer" – never send Referer .

"origin" – only send the origin in Referer , not the full page URL, e.g. only
http://site.com instead of http://site.com/path .

"origin-when-cross-origin" – send full Referer to the same origin, but
only the origin part for cross-origin requests (as above).

"same-origin" – send full Referer to the same origin, but no referer for for
cross-origin requests.

"strict-origin" – send only origin, don’t send Referer for
HTTPS→HTTP requests.

"strict-origin-when-cross-origin" – for same-origin send full
Referer , for cross-origin send only origin, unless it’s HTTPS→HTTP request,
then send nothing.

"unsafe-url" – always send full url in Referer , even for HTTPS→HTTP
requests.

Here’s a table with all combinations:

Value

To same

origin

To another

origin HTTPS→HTTP

"no-referrer" - - -

"no-referrer-when-downgrade" or ""

(default)
full full -

fetch('/page', {

 // assuming we're on https://javascript.info

 // we can set any Referer header, but only within the current origin

 referrer: "https://javascript.info/anotherpage"

});

https://w3c.github.io/webappsec-referrer-policy/

Value

To same

origin

To another

origin HTTPS→HTTP

"origin" origin origin origin

"origin-when-cross-origin" full origin origin

"same-origin" full - -

"strict-origin" origin origin -

"strict-origin-when-cross-origin" full origin -

"unsafe-url" full full full

Let’s say we have an admin zone with URL structure that shouldn’t be known from
outside of the site.

If we send a fetch , then by default it always sends the Referer header with the
full url of our page (except when we request from HTTPS to HTTP, then no
Referer).

E.g. Referer: https://javascript.info/admin/secret/paths .

If we’d like other websites know only the origin part, not URL-path, we can set the
option:

We can put it to all fetch calls, maybe integrate into JavaScript library of our
project that does all requests and uses fetch inside.

Its only difference compared to the default behavior is that for requests to another
origin fetch sends only the origin part of the URL (e.g.
https://javascript.info , without path). For requests to our origin we still get
the full Referer (maybe useful for debugging purposes).

 Referrer policy is not only for fetch

Referrer policy, described in the specification  , is not just for fetch , but more
global.

In particular, it’s possible to set the default policy for the whole page using
Referrer-Policy HTTP header, or per-link, with .

fetch('https://another.com/page', {

 // ...

 referrerPolicy: "origin-when-cross-origin" // Referer: https://javascript.info

});

https://w3c.github.io/webappsec-referrer-policy/

●

●

●

●

●

●

●

●

●

●

●

●

The mode option is a safe-guard that prevents occasional cross-origin requests:

"cors" – the default, cross-origin requests are allowed, as described in Fetch:
Cross-Origin Requests,

"same-origin" – cross-origin requests are forbidden,

"no-cors" – only simple cross-origin requests are allowed.

This option may be useful when the URL for fetch comes from a 3rd-party, and we
want a “power off switch” to limit cross-origin capabilities.

The credentials option specifies whether fetch should send cookies and
HTTP-Authorization headers with the request.

"same-origin" – the default, don’t send for cross-origin requests,

"include" – always send, requires Accept-Control-Allow-
Credentials from cross-origin server in order for JavaScript to access the
response, that was covered in the chapter Fetch: Cross-Origin Requests,

"omit" – never send, even for same-origin requests.

By default, fetch requests make use of standard HTTP-caching. That is, it honors
Expires , Cache-Control headers, sends If-Modified-Since , and so on.
Just like regular HTTP-requests do.

The cache options allows to ignore HTTP-cache or fine-tune its usage:

"default" – fetch uses standard HTTP-cache rules and headers,

"no-store" – totally ignore HTTP-cache, this mode becomes the default if we
set a header If-Modified-Since , If-None-Match , If-Unmodified-
Since , If-Match , or If-Range ,

"reload" – don’t take the result from HTTP-cache (if any), but populate cache
with the response (if response headers allow),

"no-cache" – create a conditional request if there is a cached response, and a
normal request otherwise. Populate HTTP-cache with the response,

"force-cache" – use a response from HTTP-cache, even if it’s stale. If there’s
no response in HTTP-cache, make a regular HTTP-request, behave normally,

"only-if-cached" – use a response from HTTP-cache, even if it’s stale. If
there’s no response in HTTP-cache, then error. Only works when mode is

mode

credentials

cache

●

●

●

"same-origin" .

Normally, fetch transparently follows HTTP-redirects, like 301, 302 etc.

The redirect option allows to change that:

"follow" – the default, follow HTTP-redirects,

"error" – error in case of HTTP-redirect,

"manual" – don’t follow HTTP-redirect, but response.url will be the new
URL, and response.redirected will be true , so that we can perform the
redirect manually to the new URL (if needed).

The integrity option allows to check if the response matches the known-ahead
checksum.

As described in the specification  , supported hash-functions are SHA-256, SHA-
384, and SHA-512, there might be others depending on a browser.

For example, we’re downloading a file, and we know that it’s SHA-256 checksum is
“abcdef” (a real checksum is longer, of course).

We can put it in the integrity option, like this:

Then fetch will calculate SHA-256 on its own and compare it with our string. In
case of a mismatch, an error is triggered.

The keepalive option indicates that the request may “outlive” the webpage that
initiated it.

For example, we gather statistics about how the current visitor uses our page
(mouse clicks, page fragments he views), to analyze and improve user experience.

When the visitor leaves our page – we’d like to save the data at our server.

We can use window.onunload event for that:

redirect

integrity

fetch('http://site.com/file', {

 integrity: 'sha256-abcdef'

});

keepalive

https://w3c.github.io/webappsec-subresource-integrity/

●

●

●

●

●

●

●

Normally, when a document is unloaded, all associated network requests are
aborted. But keepalive option tells the browser to perform the request in
background, even after it leaves the page. So this option is essential for our request
to succeed.

It has few limitations:

We can’t send megabytes: the body limit for keepalive requests is 64kb.

If gather more data, we can send it out regularly in packets, so that there won’t
be a lot left for the last onunload request.

The limit is for all currently ongoing requests. So we can’t cheat it by creating
100 requests, each 64kb.

We can’t handle the server response if the request is made in onunload ,
because the document is already unloaded at that time, functions won’t work.

Usually, the server sends empty response to such requests, so it’s not a
problem.

The built-in URL  class provides a convenient interface for creating and parsing
URLs.

There are no networking methods that require exactly an URL object, strings are
good enough. So technically we don’t have to use URL . But sometimes it can be
really helpful.

The syntax to create a new URL object:

url – the full URL or only path (if base is set, see below),

base – an optional base URL: if set and url argument has only path, then the
URL is generated relative to base .

window.onunload = function() {

 fetch('/analytics', {

 method: 'POST',

 body: "statistics",

 keepalive: true

 });

};

URL objects

Creating an URL

new URL(url, [base])

https://url.spec.whatwg.org/#api

For example:

These two URLs are same:

We can easily create a new URL based on the path relative to an existing URL:

The URL object immediately allows us to access its components, so it’s a nice way
to parse the url, e.g.:

Here’s the cheatsheet for URL components:

href

origin

host

protocol hostname port pathname search hash

let url = new URL('https://javascript.info/profile/admin');

let url1 = new URL('https://javascript.info/profile/admin');

let url2 = new URL('/profile/admin', 'https://javascript.info');

alert(url1); // https://javascript.info/profile/admin

alert(url2); // https://javascript.info/profile/admin

let url = new URL('https://javascript.info/profile/admin');

let newUrl = new URL('tester', url);

alert(newUrl); // https://javascript.info/profile/tester

let url = new URL('https://javascript.info/url');

alert(url.protocol); // https:

alert(url.host); // javascript.info

alert(url.pathname); // /url

●

●

●

●

●

●

●

●

●

●

●

href is the full url, same as url.toString()

protocol ends with the colon character :

search – a string of parameters, starts with the question mark ?

hash starts with the hash character #

there may be also user and password properties if HTTP authentication is
present: http://login:password@site.com (not painted above, rarely
used).

 We can pass URL objects to networking (and most other) methods instead of a
string

We can use an URL object in fetch or XMLHttpRequest , almost
everywhere where an URL-string is expected.

Generally, URL object can be passed to any method instead of a string, as most
method will perform the string conversion, that turns an URL object into a string
with full URL.

Let’s say we want to create an url with given search params, for instance,
https://google.com/search?query=JavaScript .

We can provide them in the URL string:

…But parameters need to be encoded if they contain spaces, non-latin letters, etc
(more about that below).

So there’s URL property for that: url.searchParams , an object of type
URLSearchParams  .

It provides convenient methods for search parameters:

append(name, value) – add the parameter by name ,

delete(name) – remove the parameter by name ,

get(name) – get the parameter by name ,

getAll(name) – get all parameters with the same name (that’s possible, e.g.
?user=John&user=Pete),

has(name) – check for the existance of the parameter by name ,

set(name, value) – set/replace the parameter,

SearchParams “?…”

new URL('https://google.com/search?query=JavaScript')

https://url.spec.whatwg.org/#urlsearchparams

●

●

sort() – sort parameters by name, rarely needed,

…and it’s also iterable, similar to Map .

An example with parameters that contain spaces and punctuation marks:

There’s a standard RFC3986  that defines which characters are allowed in URLs
and which are not.

Those that are not allowed, must be encoded, for instance non-latin letters and
spaces – replaced with their UTF-8 codes, prefixed by % , such as %20 (a space
can be encoded by + , for historical reasons, but that’s an exception).

The good news is that URL objects handle all that automatically. We just supply all
parameters unencoded, and then convert the URL to string:

As you can see, both Тест in the url path and ъ in the parameter are encoded.

The URL became longer, because each cyrillic letter is represented with two bytes in
UTF-8, so there are two %.. entities.

Encoding strings

let url = new URL('https://google.com/search');

url.searchParams.set('q', 'test me!'); // added parameter with a space and !

alert(url); // https://google.com/search?q=test+me%21

url.searchParams.set('tbs', 'qdr:y'); // added parameter with a colon :

// parameters are automatically encoded

alert(url); // https://google.com/search?q=test+me%21&tbs=qdr%3Ay

// iterate over search parameters (decoded)

for(let [name, value] of url.searchParams) {

 alert(`${name}=${value}`); // q=test me!, then tbs=qdr:y

}

Encoding

// using some cyrillic characters for this example

let url = new URL('https://ru.wikipedia.org/wiki/Тест');

url.searchParams.set('key', 'ъ');

alert(url); //https://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D1%81%D1%82?key=%D1%8A

https://tools.ietf.org/html/rfc3986

●

●

●

●

●

●

In old times, before URL objects appeared, people used strings for URLs.

As of now, URL objects are often more convenient, but strings can still be used as
well. In many cases using a string makes the code shorter.

If we use a string though, we need to encode/decode special characters manually.

There are built-in functions for that:

encodeURI  – encodes URL as a whole.

decodeURI  – decodes it back.

encodeURIComponent  – encodes a URL component, such as a search
parameter, or a hash, or a pathname.

decodeURIComponent  – decodes it back.

A natural question is: “What’s the difference between encodeURIComponent and
encodeURI ? When we should use either?”

That’s easy to understand if we look at the URL, that’s split into components in the
picture above:

As we can see, characters such as : , ? , = , & , # are allowed in URL.

…On the other hand, if we look at a single URL component, such as a search
parameter, these characters must be encoded, not to break the formatting.

encodeURI encodes only characters that are totally forbidden in URL.

encodeURIComponent encodes same characters, and, in addition to them,
characters # , $, & , + , , , / , : , ; , = , ? and @ .

So, for a whole URL we can use encodeURI :

…While for URL parameters we should use encodeURIComponent instead:

https://site.com:8080/path/page?p1=v1&p2=v2#hash

// using cyrillic characters in url path

let url = encodeURI('http://site.com/привет');

alert(url); // http://site.com/%D0%BF%D1%80%D0%B8%D0%B2%D0%B5%D1%82

let music = encodeURIComponent('Rock&Roll');

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURI
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURI
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent

Compare it with encodeURI :

As we can see, encodeURI does not encode & , as this is a legit character in URL
as a whole.

But we should encode & inside a search parameter, otherwise, we get
q=Rock&Roll – that is actually q=Rock plus some obscure parameter Roll .
Not as intended.

So we should use only encodeURIComponent for each search parameter, to
correctly insert it in the URL string. The safest is to encode both name and value,
unless we’re absolutely sure that it has only allowed characters.

 Encoding difference compared to URL

Classes URL  and URLSearchParams  are based on the latest URI
specification: RFC3986  , while encode* functions are based on the obsolete
version RFC2396  .

There are few differences, e.g. IPv6 addresses are encoded differently:

As we can see, encodeURI replaced square brackets [...] , that’s not
correct, the reason is: IPv6 urls did not exist at the time of RFC2396 (August
1998).

Such cases are rare, encode* functions work well most of the time.

let url = `https://google.com/search?q=${music}`;

alert(url); // https://google.com/search?q=Rock%26Roll

let music = encodeURI('Rock&Roll');

let url = `https://google.com/search?q=${music}`;

alert(url); // https://google.com/search?q=Rock&Roll

// valid url with IPv6 address

let url = 'http://[2607:f8b0:4005:802::1007]/';

alert(encodeURI(url)); // http://%5B2607:f8b0:4005:802::1007%5D/

alert(new URL(url)); // http://[2607:f8b0:4005:802::1007]/

XMLHttpRequest

https://url.spec.whatwg.org/#url-class
https://url.spec.whatwg.org/#interface-urlsearchparams
https://tools.ietf.org/html/rfc3986
https://www.ietf.org/rfc/rfc2396.txt

●

●

●

●

XMLHttpRequest is a built-in browser object that allows to make HTTP requests
in JavaScript.

Despite of having the word “XML” in its name, it can operate on any data, not only in
XML format. We can upload/download files, track progress and much more.

Right now, there’s another, more modern method fetch , that somewhat
deprecates XMLHttpRequest .

In modern web-development XMLHttpRequest is used for three reasons:

1. Historical reasons: we need to support existing scripts with XMLHttpRequest .

2. We need to support old browsers, and don’t want polyfills (e.g. to keep scripts
tiny).

3. We need something that fetch can’t do yet, e.g. to track upload progress.

Does that sound familiar? If yes, then all right, go on with XMLHttpRequest .
Otherwise, please head on to Fetch.

XMLHttpRequest has two modes of operation: synchronous and asynchronous.

Let’s see the asynchronous first, as it’s used in the majority of cases.

To do the request, we need 3 steps:

1. Create XMLHttpRequest :

The constructor has no arguments.

2. Initialize it, usually right after new XMLHttpRequest :

This method specifies the main parameters of the request:

method – HTTP-method. Usually "GET" or "POST" .

URL – the URL to request, a string, can be URL object.

async – if explicitly set to false , then the request is synchronous, we’ll
cover that a bit later.

user , password – login and password for basic HTTP auth (if required).

The basics

let xhr = new XMLHttpRequest();

xhr.open(method, URL, [async, user, password])

●

●

●

Please note that open call, contrary to its name, does not open the connection. It
only configures the request, but the network activity only starts with the call of
send .

3. Send it out.

This method opens the connection and sends the request to server. The optional
body parameter contains the request body.

Some request methods like GET do not have a body. And some of them like
POST use body to send the data to the server. We’ll see examples of that later.

4. Listen to xhr events for response.

These three events are the most widely used:

load – when the request is complete (even if HTTP status is like 400 or 500),
and the response is fully downloaded.

error – when the request couldn’t be made, e.g. network down or invalid
URL.

progress – triggers periodically while the response is being downloaded,
reports how much has been downloaded.

Here’s a full example. The code below loads the URL at
/article/xmlhttprequest/example/load from the server and prints the
progress:

xhr.send([body])

xhr.onload = function() {

 alert(`Loaded: ${xhr.status} ${xhr.response}`);

};

xhr.onerror = function() { // only triggers if the request couldn't be made at al

 alert(`Network Error`);

};

xhr.onprogress = function(event) { // triggers periodically

 // event.loaded - how many bytes downloaded

 // event.lengthComputable = true if the server sent Content-Length header

 // event.total - total number of bytes (if lengthComputable)

 alert(`Received ${event.loaded} of ${event.total}`);

};

Once the server has responded, we can receive the result in the following xhr
properties:

status

HTTP status code (a number): 200 , 404 , 403 and so on, can be 0 in case of a
non-HTTP failure.

statusText

HTTP status message (a string): usually OK for 200 , Not Found for 404 ,
Forbidden for 403 and so on.

response (old scripts may use responseText)

The server response body.

We can also specify a timeout using the corresponding property:

// 1. Create a new XMLHttpRequest object

let xhr = new XMLHttpRequest();

// 2. Configure it: GET-request for the URL /article/.../load

xhr.open('GET', '/article/xmlhttprequest/example/load');

// 3. Send the request over the network

xhr.send();

// 4. This will be called after the response is received

xhr.onload = function() {

 if (xhr.status != 200) { // analyze HTTP status of the response

 alert(`Error ${xhr.status}: ${xhr.statusText}`); // e.g. 404: Not Found

 } else { // show the result

 alert(`Done, got ${xhr.response.length} bytes`); // responseText is the server

 }

};

xhr.onprogress = function(event) {

 if (event.lengthComputable) {

 alert(`Received ${event.loaded} of ${event.total} bytes`);

 } else {

 alert(`Received ${event.loaded} bytes`); // no Content-Length

 }

};

xhr.onerror = function() {

 alert("Request failed");

};

●

●

●

●

●

●

If the request does not succeed within the given time, it gets canceled and
timeout event triggers.

 URL search parameters

To add parameters to URL, like ?name=value , and ensure the proper
encoding, we can use URL object:

We can use xhr.responseType property to set the response format:

"" (default) – get as string,

"text" – get as string,

"arraybuffer" – get as ArrayBuffer (for binary data, see chapter
ArrayBuffer, binary arrays),

"blob" – get as Blob (for binary data, see chapter Blob),

"document" – get as XML document (can use XPath and other XML methods),

"json" – get as JSON (parsed automatically).

For example, let’s get the response as JSON:

xhr.timeout = 10000; // timeout in ms, 10 seconds

let url = new URL('https://google.com/search');

url.searchParams.set('q', 'test me!');

// the parameter 'q' is encoded

xhr.open('GET', url); // https://google.com/search?q=test+me%21

Response Type

let xhr = new XMLHttpRequest();

xhr.open('GET', '/article/xmlhttprequest/example/json');

xhr.responseType = 'json';

xhr.send();

// the response is {"message": "Hello, world!"}

xhr.onload = function() {

 let responseObj = xhr.response;

 Please note:

In the old scripts you may also find xhr.responseText and even
xhr.responseXML properties.

They exist for historical reasons, to get either a string or XML document.
Nowadays, we should set the format in xhr.responseType and get
xhr.response as demonstrated above.

XMLHttpRequest changes between states as it progresses. The current state is
accessible as xhr.readyState .

All states, as in the specification  :

An XMLHttpRequest object travels them in the order 0 → 1 → 2 → 3 → … →
3 → 4 . State 3 repeats every time a data packet is received over the network.

We can track them using readystatechange event:

You can find readystatechange listeners in really old code, it’s there for
historical reasons, as there was a time when there were no load and other events.
Nowadays, load/error/progress handlers deprecate it.

 alert(responseObj.message); // Hello, world!

};

Ready states

UNSENT = 0; // initial state

OPENED = 1; // open called

HEADERS_RECEIVED = 2; // response headers received

LOADING = 3; // response is loading (a data packed is received)

DONE = 4; // request complete

xhr.onreadystatechange = function() {

 if (xhr.readyState == 3) {

 // loading

 }

 if (xhr.readyState == 4) {

 // request finished

 }

};

https://xhr.spec.whatwg.org/#states

We can terminate the request at any time. The call to xhr.abort() does that:

That triggers abort event, and xhr.status becomes 0 .

If in the open method the third parameter async is set to false , the request is
made synchronously.

In other words, JavaScript execution pauses at send() and resumes when the
response is received. Somewhat like alert or prompt commands.

Here’s the rewritten example, the 3rd parameter of open is false :

It might look good, but synchronous calls are used rarely, because they block in-
page JavaScript till the loading is complete. In some browsers it becomes impossible
to scroll. If a synchronous call takes too much time, the browser may suggest to
close the “hanging” webpage.

Many advanced capabilities of XMLHttpRequest , like requesting from another
domain or specifying a timeout, are unavailable for synchronous requests. Also, as
you can see, no progress indication.

Because of all that, synchronous requests are used very sparingly, almost never. We
won’t talk about them any more.

Aborting request

xhr.abort(); // terminate the request

Synchronous requests

let xhr = new XMLHttpRequest();

xhr.open('GET', '/article/xmlhttprequest/hello.txt', false);

try {

 xhr.send();

 if (xhr.status != 200) {

 alert(`Error ${xhr.status}: ${xhr.statusText}`);

 } else {

 alert(xhr.response);

 }

} catch(err) { // instead of onerror

 alert("Request failed");

}

XMLHttpRequest allows both to send custom headers and read headers from the
response.

There are 3 methods for HTTP-headers:

setRequestHeader(name, value)

Sets the request header with the given name and value .

For instance:

⚠ Headers limitations

Several headers are managed exclusively by the browser, e.g. Referer and
Host . The full list is in the specification  .

XMLHttpRequest is not allowed to change them, for the sake of user safety
and correctness of the request.

⚠ Can’t remove a header

Another peculiarity of XMLHttpRequest is that one can’t undo
setRequestHeader .

Once the header is set, it’s set. Additional calls add information to the header,
don’t overwrite it.

For instance:

getResponseHeader(name)

Gets the response header with the given name (except Set-Cookie and Set-
Cookie2).

For instance:

HTTP-headers

xhr.setRequestHeader('Content-Type', 'application/json');

xhr.setRequestHeader('X-Auth', '123');

xhr.setRequestHeader('X-Auth', '456');

// the header will be:

// X-Auth: 123, 456

http://www.w3.org/TR/XMLHttpRequest/#the-setrequestheader-method

getAllResponseHeaders()

Returns all response headers, except Set-Cookie and Set-Cookie2 .

Headers are returned as a single line, e.g.:

The line break between headers is always "\r\n" (doesn’t depend on OS), so we
can easily split it into individual headers. The separator between the name and the
value is always a colon followed by a space ": " . That’s fixed in the specification.

So, if we want to get an object with name/value pairs, we need to throw in a bit JS.

Like this (assuming that if two headers have the same name, then the latter one
overwrites the former one):

To make a POST request, we can use the built-in FormData  object.

The syntax:

We create it, optionally fill from a form, append more fields if needed, and then:

1. xhr.open('POST', ...) – use POST method.

xhr.getResponseHeader('Content-Type')

Cache-Control: max-age=31536000

Content-Length: 4260

Content-Type: image/png

Date: Sat, 08 Sep 2012 16:53:16 GMT

let headers = xhr

 .getAllResponseHeaders()

 .split('\r\n')

 .reduce((result, current) => {

 let [name, value] = current.split(': ');

 result[name] = value;

 return result;

 }, {});

// headers['Content-Type'] = 'image/png'

POST, FormData

let formData = new FormData([form]); // creates an object, optionally fill from <for

formData.append(name, value); // appends a field

https://developer.mozilla.org/en-US/docs/Web/API/FormData

2. xhr.send(formData) to submit the form to the server.

For instance:

The form is sent with multipart/form-data encoding.

Or, if we like JSON more, then JSON.stringify and send as a string.

Just don’t forget to set the header Content-Type: application/json , many
server-side frameworks automatically decode JSON with it:

The .send(body) method is pretty omnivore. It can send almost any body ,
including Blob and BufferSource objects.

<form name="person">

 <input name="name" value="John">

 <input name="surname" value="Smith">

</form>

<script>

 // pre-fill FormData from the form

 let formData = new FormData(document.forms.person);

 // add one more field

 formData.append("middle", "Lee");

 // send it out

 let xhr = new XMLHttpRequest();

 xhr.open("POST", "/article/xmlhttprequest/post/user");

 xhr.send(formData);

 xhr.onload = () => alert(xhr.response);

</script>

let xhr = new XMLHttpRequest();

let json = JSON.stringify({

 name: "John",

 surname: "Smith"

});

xhr.open("POST", '/submit')

xhr.setRequestHeader('Content-type', 'application/json; charset=utf-8');

xhr.send(json);

Upload progress

●

●

●

●

●

●

●

The progress event triggers only on the downloading stage.

That is: if we POST something, XMLHttpRequest first uploads our data (the
request body), then downloads the response.

If we’re uploading something big, then we’re surely more interested in tracking the
upload progress. But xhr.onprogress doesn’t help here.

There’s another object, without methods, exclusively to track upload events:
xhr.upload .

It generates events, similar to xhr , but xhr.upload triggers them solely on
uploading:

loadstart – upload started.

progress – triggers periodically during the upload.

abort – upload aborted.

error – non-HTTP error.

load – upload finished successfully.

timeout – upload timed out (if timeout property is set).

loadend – upload finished with either success or error.

Example of handlers:

Here’s a real-life example: file upload with progress indication:

xhr.upload.onprogress = function(event) {

 alert(`Uploaded ${event.loaded} of ${event.total} bytes`);

};

xhr.upload.onload = function() {

 alert(`Upload finished successfully.`);

};

xhr.upload.onerror = function() {

 alert(`Error during the upload: ${xhr.status}`);

};

<input type="file" onchange="upload(this.files[0])">

<script>

function upload(file) {

 let xhr = new XMLHttpRequest();

 // track upload progress

 xhr.upload.onprogress = function(event) {

XMLHttpRequest can make cross-origin requests, using the same CORS policy
as fetch.

Just like fetch , it doesn’t send cookies and HTTP-authorization to another origin
by default. To enable them, set xhr.withCredentials to true :

See the chapter Fetch: Cross-Origin Requests for details about cross-origin headers.

Typical code of the GET-request with XMLHttpRequest :

 console.log(`Uploaded ${event.loaded} of ${event.total}`);

 };

 // track completion: both successful or not

 xhr.onloadend = function() {

 if (xhr.status == 200) {

 console.log("success");

 } else {

 console.log("error " + this.status);

 }

 };

 xhr.open("POST", "/article/xmlhttprequest/post/upload");

 xhr.send(file);

}

</script>

Cross-origin requests

let xhr = new XMLHttpRequest();

xhr.withCredentials = true;

xhr.open('POST', 'http://anywhere.com/request');

...

Summary

let xhr = new XMLHttpRequest();

xhr.open('GET', '/my/url');

xhr.send();

xhr.onload = function() {

 if (xhr.status != 200) { // HTTP error?

 // handle error

 alert('Error: ' + xhr.status);

●

●

●

●

●

●

●

There are actually more events, the modern specification  lists them (in the
lifecycle order):

loadstart – the request has started.

progress – a data packet of the response has arrived, the whole response
body at the moment is in responseText .

abort – the request was canceled by the call xhr.abort() .

error – connection error has occurred, e.g. wrong domain name. Doesn’t
happen for HTTP-errors like 404.

load – the request has finished successfully.

timeout – the request was canceled due to timeout (only happens if it was set).

loadend – triggers after load , error , timeout or abort .

The error , abort , timeout , and load events are mutually exclusive. Only
one of them may happen.

The most used events are load completion (load), load failure (error), or we can
use a single loadend handler and check the properties of the request object xhr
to see what happened.

We’ve already seen another event: readystatechange . Historically, it appeared
long ago, before the specification settled. Nowadays, there’s no need to use it, we
can replace it with newer events, but it can often be found in older scripts.

If we need to track uploading specifically, then we should listen to same events on
xhr.upload object.

With fetch method it’s fairly easy to upload a file.

 return;

 }

 // get the response from xhr.response

};

xhr.onprogress = function(event) {

 // report progress

 alert(`Loaded ${event.loaded} of ${event.total}`);

};

xhr.onerror = function() {

 // handle non-HTTP error (e.g. network down)

};

Resumable file upload

http://www.w3.org/TR/XMLHttpRequest/#events

How to resume the upload after lost connection? There’s no built-in option for that,
but we have the pieces to implement it.

Resumable uploads should come with upload progress indication, as we expect big
files (if we may need to resume). So, as fetch doesn’t allow to track upload
progress, we’ll use XMLHttpRequest.

To resume upload, we need to know how much was uploaded till the connection was
lost.

There’s xhr.upload.onprogress to track upload progress.

Unfortunately, it won’t help us to resume the upload here, as it triggers when the data
is sent, but was it received by the server? The browser doesn’t know.

Maybe it was buffered by a local network proxy, or maybe the remote server process
just died and couldn’t process them, or it was just lost in the middle and didn’t reach
the receiver.

That’s why this event is only useful to show a nice progress bar.

To resume upload, we need to know exactly the number of bytes received by the
server. And only the server can tell that, so we’ll make an additional request.

1. First, create a file id, to uniquely identify the file we’re going to upload:

That’s needed for resume upload, to tell the server what we’re resuming.

If the name or the size or the last modification date changes, then there’ll be
another fileId .

2. Send a request to the server, asking how many bytes it already has, like this:

Not-so-useful progress event

Algorithm

let fileId = file.name + '-' + file.size + '-' + +file.lastModifiedDate;

let response = await fetch('status', {

 headers: {

 'X-File-Id': fileId

 }

});

// The server has that many bytes

let startByte = +await response.text();

This assumes that the server tracks file uploads by X-File-Id header. Should
be implemented at server-side.

If the file don’t yet exist at the server, then the server response should be 0

3. Then, we can use Blob method slice to send the file from startByte :

Here we send the server both file id as X-File-Id , so it knows which file we’re
uploading, and the starting byte as X-Start-Byte , so it knows we’re not
uploading it initially, but resuming.

The server should check its records, and if there was an upload of that file, and
the current uploaded size is exactly X-Start-Byte , then append the data to it.

Here’s the demo with both client and server code, written on Node.js.

It works only partially on this site, as Node.js is behind another server named Nginx,
that buffers uploads, passing them to Node.js when fully complete.

But you can download it and run locally for the full demonstration:

https://plnkr.co/edit/HU6RtwoyY84jIq6zHqv6?p=preview 

As we can see, modern networking methods are close to file managers in their
capabilities – control over headers, progress indicator, sending file parts, etc.

We can implement resumable upload and much more.

Long polling is the simplest way of having persistent connection with server, that
doesn’t use any specific protocol like WebSocket or Server Side Events.

Being very easy to implement, it’s also good enough in a lot of cases.

xhr.open("POST", "upload", true);

// File id, so that the server knows which file we upload

xhr.setRequestHeader('X-File-Id', fileId);

// The byte we're resuming from, so the server knows we're resuming

xhr.setRequestHeader('X-Start-Byte', startByte);

xhr.upload.onprogress = (e) => {

 console.log(`Uploaded ${startByte + e.loaded} of ${startByte + e.total}`);

};

// file can be from input.files[0] or another source

xhr.send(file.slice(startByte));

Long polling

https://plnkr.co/edit/HU6RtwoyY84jIq6zHqv6?p=preview

The simplest way to get new information from the server is periodic polling. That is,
regular requests to the server: “Hello, I’m here, do you have any information for
me?”. For example, once in 10 seconds.

In response, the server first takes a notice to itself that the client is online, and
second – sends a packet of messages it got till that moment.

That works, but there are downsides:

1. Messages are passed with a delay up to 10 seconds (between requests).

2. Even if there are no messages, the server is bombed with requests every 10
seconds, even if the user switched somewhere else or is asleep. That’s quite a
load to handle, speaking performance-wise.

So, if we’re talking about a very small service, the approach may be viable, but
generally, it needs an improvement.

So-called “long polling” is a much better way to poll the server.

It’s also very easy to implement, and delivers messages without delays.

The flow:

1. A request is sent to the server.

2. The server doesn’t close the connection until it has a message to send.

3. When a message appears – the server responds to the request with it.

4. The browser makes a new request immediately.

The situation when the browser sent a request and has a pending connection with
the server, is standard for this method. Only when a message is delivered, the
connection is reestablished.

Regular Polling

Long polling

Browser

Server

request

connection
hangs

connection breaks
end of request

da
ta

request

connection
hangs

requestda
ta

connection breaks
end of request

If the connection is lost, because of, say, a network error, the browser immediately
sends a new request.

A sketch of client-side subscribe function that makes long requests:

As you can see, subscribe function makes a fetch, then waits for the response,
handles it and calls itself again.

async function subscribe() {

 let response = await fetch("/subscribe");

 if (response.status == 502) {

 // Status 502 is a connection timeout error,

 // may happen when the connection was pending for too long,

 // and the remote server or a proxy closed it

 // let's reconnect

 await subscribe();

 } else if (response.status != 200) {

 // An error - let's show it

 showMessage(response.statusText);

 // Reconnect in one second

 await new Promise(resolve => setTimeout(resolve, 1000));

 await subscribe();

 } else {

 // Get and show the message

 let message = await response.text();

 showMessage(message);

 // Call subscribe() again to get the next message

 await subscribe();

 }

}

subscribe();

⚠ Server should be ok with many pending connections

The server architecture must be able to work with many pending connections.

Certain server architectures run a process per connect. For many connections
there will be as many processes, and each process takes a lot of memory. So
many connections just consume it all.

That’s often the case for backends written in PHP, Ruby languages, but
technically isn’t a language, but rather implementation issue. Most modern
language allow to implement a proper backend, but some of them make it easier
than the other.

Backends written using Node.js usually don’t have such problems.

Here’s a demo chat, you can also download it and run locally (if you’re familiar with
Node.js and can install modules):

https://plnkr.co/edit/pggiSW0N8x4GuNwUryVj?p=preview 

Browser code is in browser.js .

Long polling works great in situations when messages are rare.

If messages come very often, then the chart of requesting-receiving messages,
painted above, becomes saw-like.

Every message is a separate request, supplied with headers, authentication
overhead, and so on.

So, in this case, another method is preferred, such as Websocket or Server Sent
Events.

The WebSocket protocol, described in the specification RFC 6455  provides a
way to exchange data between browser and server via a persistent connection. The
data can be passed in both directions as “packets”, without breaking the connection
and additional HTTP-requests.

WebSocket is especially great for services that require continuous data exchange,
e.g. online games, real-time trading systems and so on.

Demo: a chat

Area of usage

WebSocket

https://plnkr.co/edit/pggiSW0N8x4GuNwUryVj?p=preview
http://tools.ietf.org/html/rfc6455

●

●

●

●

To open a websocket connection, we need to create new WebSocket using the
special protocol ws in the url:

There’s also encrypted wss:// protocol. It’s like HTTPS for websockets.

 Always prefer wss://

The wss:// protocol not only encrypted, but also more reliable.

That’s because ws:// data is not encrypted, visible for any intermediary. Old
proxy servers do not know about WebSocket, they may see “strange” headers
and abort the connection.

On the other hand, wss:// is WebSocket over TLS, (same as HTTPS is HTTP
over TLS), the transport security layer encrypts the data at sender and decrypts
at the receiver. So data packets are passed encrypted through proxies. They
can’t see what’s inside and let them through.

Once the socket is created, we should listen to events on it. There are totally 4
events:

open – connection established,

message – data received,

error – websocket error,

close – connection closed.

…And if we’d like to send something, then socket.send(data) will do that.

Here’s an example:

A simple example

 let socket = new WebSocket("ws://javascript.info");

let socket = new WebSocket("wss://javascript.info/article/websocket/demo/hello");

socket.onopen = function(e) {

 alert("[open] Connection established");

 alert("Sending to server");

 socket.send("My name is John");

};

socket.onmessage = function(event) {

 alert(`[message] Data received from server: ${event.data}`);

};

For demo purposes, there’s a small server server.js written in Node.js, for the
example above, running. It responds with “Hello from server, John”, then waits 5
seconds and closes the connection.

So you’ll see events open → message → close .

That’s actually it, we can talk WebSocket already. Quite simple, isn’t it?

Now let’s talk more in-depth.

When new WebSocket(url) is created, it starts connecting immediately.

During the connection the browser (using headers) asks the server: “Do you support
Websocket?” And if the server replies “yes”, then the talk continues in WebSocket
protocol, which is not HTTP at all.

Browser Server

HTTP-request

"Hey, server, let's talk WebSocket?"

HTTP-response
"Okay!"

WebSocket protocol

socket.onclose = function(event) {

 if (event.wasClean) {

 alert(`[close] Connection closed cleanly, code=${event.code} reason=${event.reas

 } else {

 // e.g. server process killed or network down

 // event.code is usually 1006 in this case

 alert('[close] Connection died');

 }

};

socket.onerror = function(error) {

 alert(`[error] ${error.message}`);

};

Opening a websocket

https://javascript.info/article/websocket/demo/server.js

●

●

●

●

●

Here’s an example of browser headers for request made by new
WebSocket("wss://javascript.info/chat") .

Origin – the origin of the client page, e.g. https://javascript.info .
WebSocket objects are cross-origin by nature. There are no special headers or
other limitations. Old servers are unable to handle WebSocket anyway, so there
are no compabitility issues. But Origin header is important, as it allows the
server to decide whether or not to talk WebSocket with this website.

Connection: Upgrade – signals that the client would like to change the
protocol.

Upgrade: websocket – the requested protocol is “websocket”.

Sec-WebSocket-Key – a random browser-generated key for security.

Sec-WebSocket-Version – WebSocket protocol version, 13 is the current
one.

 WebSocket handshake can’t be emulated

We can’t use XMLHttpRequest or fetch to make this kind of HTTP-request,
because JavaScript is not allowed to set these headers.

If the server agrees to switch to WebSocket, it should send code 101 response:

Here Sec-WebSocket-Accept is Sec-WebSocket-Key , recoded using a
special algorithm. The browser uses it to make sure that the response corresponds
to the request.

Afterwards, the data is transfered using WebSocket protocol, we’ll see its structure
(“frames”) soon. And that’s not HTTP at all.

Extensions and subprotocols

GET /chat

Host: javascript.info

Origin: https://javascript.info

Connection: Upgrade

Upgrade: websocket

Sec-WebSocket-Key: Iv8io/9s+lYFgZWcXczP8Q==

Sec-WebSocket-Version: 13

101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: hsBlbuDTkk24srzEOTBUlZAlC2g=

●

●

There may be additional headers Sec-WebSocket-Extensions and Sec-
WebSocket-Protocol that describe extensions and subprotocols.

For instance:

Sec-WebSocket-Extensions: deflate-frame means that the browser
supports data compression. An extension is something related to transferring the
data, functionality that extends WebSocket protocol. The header Sec-
WebSocket-Extensions is sent automatically by the browser, with the list of all
extenions it supports.

Sec-WebSocket-Protocol: soap, wamp means that we’d like to transfer
not just any data, but the data in SOAP  or WAMP (“The WebSocket
Application Messaging Protocol”) protocols. WebSocket subprotocols are
registered in the IANA catalogue  . So, this header describes data formats that
we’re going to use.

This optional header is set using the second parameter of new WebSocket .
That’s the array of subprotocols, e.g. if we’d like to use SOAP or WAMP:

The server should respond with a list of protocols and extensions that it agrees to
use.

For example, the request:

Response:

let socket = new WebSocket("wss://javascript.info/chat", ["soap", "wamp"]);

GET /chat

Host: javascript.info

Upgrade: websocket

Connection: Upgrade

Origin: https://javascript.info

Sec-WebSocket-Key: Iv8io/9s+lYFgZWcXczP8Q==

Sec-WebSocket-Version: 13

Sec-WebSocket-Extensions: deflate-frame

Sec-WebSocket-Protocol: soap, wamp

101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: hsBlbuDTkk24srzEOTBUlZAlC2g=

Sec-WebSocket-Extensions: deflate-frame

Sec-WebSocket-Protocol: soap

http://en.wikipedia.org/wiki/SOAP
http://www.iana.org/assignments/websocket/websocket.xml

●

●

●

●

Here the server responds that it supports the extension “deflate-frame”, and only
SOAP of the requested subprotocols.

WebSocket communication consists of “frames” – data fragments, that can be sent
from either side, and can be of several kinds:

“text frames” – contain text data that parties send to each other.

“binary data frames” – contain binary data that parties send to each other.

“ping/pong frames” are used to check the connection, sent from the server, the
browser responds to these automatically.

there’s also “connection close frame” and a few other service frames.

In the browser, we directly work only with text or binary frames.

WebSocket .send() method can send either text or binary data.

A call socket.send(body) allows body in string or a binary format, including
Blob , ArrayBuffer , etc. No settings required: just send it out in any format.

When we receive the data, text always comes as string. And for binary data, we
can choose between Blob and ArrayBuffer formats.

That’s set by socket.bufferType property, it’s "blob" by default, so binary
data comes as Blob objects.

Blob is a high-level binary object, it directly integrates with <a> , and other
tags, so that’s a sane default. But for binary processing, to access individual data
bytes, we can change it to "arraybuffer" :

Imagine, our app is generating a lot of data to send. But the user has a slow network
connection, maybe on a mobile internet, outside of a city.

We can call socket.send(data) again and again. But the data will be buffered
(stored) in memory and sent out only as fast as network speed allows.

The socket.bufferedAmount property stores how many bytes are buffered at
this moment, waiting to be sent over the network.

Data transfer

socket.bufferType = "arraybuffer";

socket.onmessage = (event) => {

 // event.data is either a string (if text) or arraybuffer (if binary)

};

Rate limiting

●

●

●

●

We can examine it to see whether the socket is actually available for transmission.

Normally, when a party wants to close the connection (both browser and server have
equal rights), they send a “connection close frame” with a numeric code and a
textual reason.

The method for that is:

code is a special WebSocket closing code (optional)

reason is a string that describes the reason of closing (optional)

Then the other party in close event handler gets the code and the reason, e.g.:

Most common code values:

1000 – the default, normal closure (used if no code supplied),

1006 – no way to such code manually, indicates that the connection was lost (no
close frame).

There are other codes like:

// every 100ms examine the socket and send more data

// only if all the existing data was sent out

setInterval(() => {

 if (socket.bufferedAmount == 0) {

 socket.send(moreData());

 }

}, 100);

Connection close

socket.close([code], [reason]);

// closing party:

socket.close(1000, "Work complete");

// the other party

socket.onclose = event => {

 // event.code === 1000

 // event.reason === "Work complete"

 // event.wasClean === true (clean close)

};

●

●

●

●

●

●

●

●

1001 – the party is going away, e.g. server is shutting down, or a browser leaves
the page,

1009 – the message is too big to process,

1011 – unexpected error on server,

…and so on.

The full list can be found in RFC6455, §7.4.1  .

WebSocket codes are somewhat like HTTP codes, but different. In particular, any
codes less than 1000 are reserved, there’ll be an error if we try to set such a code.

To get connection state, additionally there’s socket.readyState property with
values:

0 – “CONNECTING”: the connection has not yet been established,

1 – “OPEN”: communicating,

2 – “CLOSING”: the connection is closing,

3 – “CLOSED”: the connection is closed.

Let’s review a chat example using browser WebSocket API and Node.js WebSocket
module https://github.com/websockets/ws  . We’ll pay the main attention to the
client side, but the server is also simple.

HTML: we need a <form> to send messages and a <div> for incoming
messages:

// in case connection is broken

socket.onclose = event => {

 // event.code === 1006

 // event.reason === ""

 // event.wasClean === false (no closing frame)

};

Connection state

Chat example

<!-- message form -->

<form name="publish">

 <input type="text" name="message">

 <input type="submit" value="Send">

</form>

https://tools.ietf.org/html/rfc6455#section-7.4.1
https://github.com/websockets/ws

From JavaScript we want three things:

1. Open the connection.

2. On form submission – socket.send(message) for the message.

3. On incoming message – append it to div#messages .

Here’s the code:

Server-side code is a little bit beyond our scope. Here we’ll use Node.js, but you
don’t have to. Other platforms also have their means to work with WebSocket.

The server-side algorithm will be:

1. Create clients = new Set() – a set of sockets.

2. For each accepted websocket, add it to the set clients.add(socket) and
setup message event listener to get its messages.

3. When a message received: iterate over clients and send it to everyone.

4. When a connection is closed: clients.delete(socket) .

<!-- div with messages -->

<div id="messages"></div>

let socket = new WebSocket("wss://javascript.info/article/websocket/chat/ws");

// send message from the form

document.forms.publish.onsubmit = function() {

 let outgoingMessage = this.message.value;

 socket.send(outgoingMessage);

 return false;

};

// message received - show the message in div#messages

socket.onmessage = function(event) {

 let message = event.data;

 let messageElem = document.createElement('div');

 messageElem.textContent = message;

 document.getElementById('messages').prepend(messageElem);

}

const ws = new require('ws');

const wss = new ws.Server({noServer: true});

const clients = new Set();

●

●

●

●

●

Here’s the working example:

You can also download it (upper-right button in the iframe) and run locally. Just don’t
forget to install Node.js  and npm install ws before running.

WebSocket is a modern way to have persistent browser-server connections.

WebSockets don’t have cross-origin limitations.

They are well-supported in browsers.

Can send/receive strings and binary data.

The API is simple.

Methods:

socket.send(data) ,

socket.close([code], [reason]) .

Events:

http.createServer((req, res) => {

 // here we only handle websocket connections

 // in real project we'd have some other code here to handle non-websocket requests

 wss.handleUpgrade(req, req.socket, Buffer.alloc(0), onSocketConnect);

});

function onSocketConnect(ws) {

 clients.add(ws);

 ws.on('message', function(message) {

 message = message.slice(0, 50); // max message length will be 50

 for(let client of clients) {

 client.send(message);

 }

 });

 ws.on('close', function() {

 clients.delete(ws);

 });

}

 Send

Summary

https://nodejs.org/en/

●

●

●

●

open ,

message ,

error ,

close .

WebSocket by itself does not include reconnection, authentication and many other
high-level mechanisms. So there are client/server libraries for that, and it’s also
possible to implement these capabilities manually.

Sometimes, to integrate WebSocket into existing project, people run WebSocket
server in parallel with the main HTTP-server, and they share a single database.
Requests to WebSocket use wss://ws.site.com , a subdomain that leads to
WebSocket server, while https://site.com goes to the main HTTP-server.

Surely, other ways of integration are also possible.

The Server-Sent Events  specification describes a built-in class EventSource ,
that keeps connection with the server and allows to receive events from it.

Similar to WebSocket , the connection is persistent.

But there are several important differences:

WebSocket EventSource

Bi-directional: both client and server can exchange messages One-directional: only server sends data

Binary and text data Only text

WebSocket protocol Regular HTTP

EventSource is a less-powerful way of communicating with the server than
WebSocket .

Why should one ever use it?

The main reason: it’s simpler. In many applications, the power of WebSocket is a
little bit too much.

We need to receive a stream of data from server: maybe chat messages or market
prices, or whatever. That’s what EventSource is good at. Also it supports auto-
reconnect, something we need to implement manually with WebSocket . Besides,
it’s a plain old HTTP, not a new protocol.

Server Sent Events

Getting messages

https://html.spec.whatwg.org/multipage/comms.html#the-eventsource-interface

●

●

●

To start receiving messages, we just need to create new EventSource(url) .

The browser will connect to url and keep the connection open, waiting for events.

The server should respond with status 200 and the header Content-Type:
text/event-stream , then keep the connection and write messages into it in the
special format, like this:

A message text goes after data: , the space after the colon is optional.

Messages are delimited with double line breaks \n\n .

To send a line break \n , we can immediately send one more data: (3rd
message above).

In practice, complex messages are usually sent JSON-encoded. Line-breaks are
encoded as \n within them, so multiline data: messages are not necessary.

For instance:

…So we can assume that one data: holds exactly one message.

For each such message, the message event is generated:

Cross-origin requests
EventSource supports cross-origin requests, like fetch any other networking
methods. We can use any URL:

data: Message 1

data: Message 2

data: Message 3

data: of two lines

 data: {"user":"John","message":"First line\n Second line"}

let eventSource = new EventSource("/events/subscribe");

eventSource.onmessage = function(event) {

 console.log("New message", event.data);

 // will log 3 times for the data stream above

};

// or eventSource.addEventListener('message', ...)

●

●

The remote server will get the Origin header and must respond with Access-
Control-Allow-Origin to proceed.

To pass credentials, we should set the additional option withCredentials , like
this:

Please see the chapter Fetch: Cross-Origin Requests for more details about cross-
origin headers.

Upon creation, new EventSource connects to the server, and if the connection is
broken – reconnects.

That’s very convenient, as we don’t have to care about it.

There’s a small delay between reconnections, a few seconds by default.

The server can set the recommended delay using retry: in response (in
milliseconds):

The retry: may come both together with some data, or as a standalone message.

The browser should wait that many milliseconds before reconnecting. Or longer, e.g.
if the browser knows (from OS) that there’s no network connection at the moment, it
may wait until the connection appears, and then retry.

If the server wants the browser to stop reconnecting, it should respond with HTTP
status 204.

If the browser wants to close the connection, it should call
eventSource.close() :

let source = new EventSource("https://another-site.com/events");

let source = new EventSource("https://another-site.com/events", {

 withCredentials: true

});

Reconnection

retry: 15000

data: Hello, I set the reconnection delay to 15 seconds

let eventSource = new EventSource(...);

●

●

Also, there will be no reconnection if the response has an incorrect Content-Type
or its HTTP status differs from 301, 307, 200 and 204. In such cases the "error"
event will be emitted, and the browser won’t reconnect.

 Please note:

When a connection is finally closed, there’s no way to “reopen” it. If we’d like to
connect again, just create a new EventSource .

When a connection breaks due to network problems, either side can’t be sure which
messages were received, and which weren’t.

To correctly resume the connection, each message should have an id field, like
this:

When a message with id: is received, the browser:

Sets the property eventSource.lastEventId to its value.

Upon reconnection sends the header Last-Event-ID with that id , so that the
server may re-send following messages.

 Put id: after data:

Please note: the id is appended below message data by the server, to
ensure that lastEventId is updated after the message is received.

eventSource.close();

Message id

data: Message 1

id: 1

data: Message 2

id: 2

data: Message 3

data: of two lines

id: 3

Connection status: readyState

●

●

●

The EventSource object has readyState property, that has one of three
values:

When an object is created, or the connection is down, it’s always
EventSource.CONNECTING (equals 0).

We can query this property to know the state of EventSource .

By default EventSource object generates three events:

message – a message received, available as event.data .

open – the connection is open.

error – the connection could not be established, e.g. the server returned HTTP
500 status.

The server may specify another type of event with event: ... at the event start.

For example:

To handle custom events, we must use addEventListener , not onmessage :

EventSource.CONNECTING = 0; // connecting or reconnecting

EventSource.OPEN = 1; // connected

EventSource.CLOSED = 2; // connection closed

Event types

event: join

data: Bob

data: Hello

event: leave

data: Bob

eventSource.addEventListener('join', event => {

 alert(`Joined ${event.data}`);

});

eventSource.addEventListener('message', event => {

 alert(`Said: ${event.data}`);

});

eventSource.addEventListener('leave', event => {

●

●

●

Here’s the server that sends messages with 1 , 2 , 3 , then bye and breaks the
connection.

Then the browser automatically reconnects.

https://plnkr.co/edit/LmOdPFHJdD3yIrRGhkSF?p=preview 

EventSource object automatically establishes a persistent connection and allows
the server to send messages over it.

It offers:

Automatic reconnect, with tunable retry timeout.

Message ids to resume events, the last received identifier is sent in Last-
Event-ID header upon reconnection.

The current state is in the readyState property.

That makes EventSource a viable alternative to WebSocket , as it’s more low-
level and lacks such built-in features (though they can be implemented).

In many real-life applications, the power of EventSource is just enough.

Supported in all modern browsers (not IE).

The syntax is:

The second argument has only one possible option: { withCredentials: true
} , it allows sending cross-origin credentials.

Overall cross-origin security is same as for fetch and other network methods.

Properties of an EventSource object

readyState

The current connection state: either EventSource.CONNECTING (=0) ,
EventSource.OPEN (=1) or EventSource.CLOSED (=2) .

 alert(`Left ${event.data}`);

});

Full example

Summary

let source = new EventSource(url, [credentials]);

https://plnkr.co/edit/LmOdPFHJdD3yIrRGhkSF?p=preview

●

●

●

●

lastEventId

The last received id . Upon reconnection the browser sends it in the header Last-
Event-ID .

Methods

close()

Closes the connection.

Events

message

Message received, the data is in event.data .

open

The connection is established.

error

In case of an error, including both lost connection (will auto-reconnect) and fatal
errors. We can check readyState to see if the reconnection is being attempted.

The server may set a custom event name in event: . Such events should be
handled using addEventListener , not on<event> .

Server response format
The server sends messages, delimited by \n\n .

A message may have following fields:

data: – message body, a sequence of multiple data is interpreted as a single
message, with \n between the parts.

id: – renews lastEventId , sent in Last-Event-ID on reconnect.

retry: – recommends a retry delay for reconnections in ms. There’s no way to
set it from JavaScript.

event: – event name, must precede data: .

A message may include one or more fields in any order, but id: usually goes the
last.

Storing data in the browser
Cookies, document.cookie

Cookies are small strings of data that are stored directly in the browser. They are a
part of HTTP protocol, defined by RFC 6265  specification.

Cookies are usually set by a web-server using response Set-Cookie HTTP-
header. Then the browser automatically adds them to (almost) every request to the
same domain using Cookie HTTP-header.

One of the most widespread use cases is authentication:

1. Upon sign in, the server uses Set-Cookie HTTP-header in the response to set
a cookie with a unique “session identifier”.

2. Next time when the request is set to the same domain, the browser sends the
cookie over the net using Cookie HTTP-header.

3. So the server knows who made the request.

We can also access cookies from the browser, using document.cookie property.

There are many tricky things about cookies and their options. In this chapter we’ll
cover them in detail.

Assuming you’re on a website, it’s possible to see the cookies from it, like this:

The value of document.cookie consists of name=value pairs, delimited by ; .
Each one is a separate cookie.

To find a particular cookie, we can split document.cookie by ; , and then find
the right name. We can use either a regular expression or array functions to do that.

We leave it as an exercise for the reader. Also, at the end of the chapter you’ll find
helper functions to manipulate cookies.

We can write to document.cookie . But it’s not a data property, it’s an accessor
(getter/setter). An assignment to it is treated specially.

A write operation to document.cookie updates only cookies mentioned in it,
but doesn’t touch other cookies.

For instance, this call sets a cookie with the name user and value John :

Reading from document.cookie

// At javascript.info, we use Google Analytics for statistics,

// so there should be some cookies

alert(document.cookie); // cookie1=value1; cookie2=value2;...

Writing to document.cookie

https://tools.ietf.org/html/rfc6265

●

●

●

If you run it, then probably you’ll see multiple cookies. That’s because
document.cookie= operation does not overwrite all cookies. It only sets the
mentioned cookie user .

Technically, name and value can have any characters, to keep the valid formatting
they should be escaped using a built-in encodeURIComponent function:

⚠ Limitations

There are few limitations:

The name=value pair, after encodeURIComponent , should not exceed
4kb. So we can’t store anything huge in a cookie.

The total number of cookies per domain is limited to around 20+, the exact
limit depends on a browser.

Cookies have several options, many of them are important and should be set.

The options are listed after key=value , delimited by ; , like this:

path=/mypath

The url path prefix, the cookie will be accessible for pages under that path. Must be
absolute. By default, it’s the current path.

If a cookie is set with path=/admin , it’s visible at pages /admin and
/admin/something , but not at /home or /adminpage .

document.cookie = "user=John"; // update only cookie named 'user'

alert(document.cookie); // show all cookies

// special characters (spaces), need encoding

let name = "my name";

let value = "John Smith"

// encodes the cookie as my%20name=John%20Smith

document.cookie = encodeURIComponent(name) + '=' + encodeURIComponent(value);

alert(document.cookie); // ...; my%20name=John%20Smith

document.cookie = "user=John; path=/; expires=Tue, 19 Jan 2038 03:14:07 GMT"

path

●

Usually, we should set path to the root: path=/ to make the cookie accessible
from all website pages.

domain=site.com

A domain where the cookie is accessible. In practice though, there are limitations.
We can’t set any domain.

By default, a cookie is accessible only at the domain that set it. So, if the cookie was
set by site.com , we won’t get it other.com .

…But what’s more tricky, we also won’t get the cookie at a subdomain
forum.site.com !

There’s no way to let a cookie be accessible from another 2nd-level domain, so
other.com will never receive a cookie set at site.com .

It’s a safety restriction, to allow us to store sensitive data in cookies, that should be
available only on one site.

…But if we’d like to allow subdomains like forum.site.com get a cookie, that’s
possible. When setting a cookie at site.com , we should explicitly set domain
option to the root domain: domain=site.com :

For historical reasons, domain=.site.com (a dot before site.com) also works
the same way, allowing access to the cookie from subdomains. That’s an old
notation, should be used if we need to support very old browsers.

So, domain option allows to make a cookie accessible at subdomains.

domain

// at site.com

document.cookie = "user=John"

// at forum.site.com

alert(document.cookie); // no user

// at site.com

// make the cookie accessible on any subdomain *.site.com:

document.cookie = "user=John; domain=site.com"

// later

// at forum.site.com

alert(document.cookie); // has cookie user=John

●

●

●

By default, if a cookie doesn’t have one of these options, it disappears when the
browser is closed. Such cookies are called “session cookies”

To let cookies survive browser close, we can set either expires or max-age
option.

expires=Tue, 19 Jan 2038 03:14:07 GMT

Cookie expiration date, when the browser will delete it automatically.

The date must be exactly in this format, in GMT timezone. We can use
date.toUTCString to get it. For instance, we can set the cookie to expire in 1
day:

If we set expires to a date in the past, the cookie is deleted.

max-age=3600

An alternative to expires , specifies the cookie expiration in seconds from the
current moment.

If zero or negative, then the cookie is deleted:

secure

The cookie should be transferred only over HTTPS.

By default, if we set a cookie at http://site.com , then it also appears at
https://site.com and vice versa.

That is, cookies are domain-based, they do not distinguish between the protocols.

expires, max-age

// +1 day from now

let date = new Date(Date.now() + 86400e3);

date = date.toUTCString();

document.cookie = "user=John; expires=" + date;

// cookie will die +1 hour from now

document.cookie = "user=John; max-age=3600";

// delete cookie (let it expire right now)

document.cookie = "user=John; max-age=0";

secure

With this option, if a cookie is set by https://site.com , then it doesn’t appear
when the same site is accessed by HTTP, as http://site.com . So if a cookie
has sensitive content that should never be sent over unencrypted HTTP, then the
flag is the right thing.

That’s another security attribute samesite . It’s designed to protect from so-called
XSRF (cross-site request forgery) attacks.

To understand how it works and when it’s useful, let’s take a look at XSRF attacks.

XSRF attack
Imagine, you are logged into the site bank.com . That is: you have an
authentication cookie from that site. Your browser sends it to bank.com with every
request, so that it recognizes you and performs all sensitive financial operations.

Now, while browsing the web in another window, you accidentally come to another
site evil.com . That site has JavaScript code that submits a form <form
action="https://bank.com/pay"> to bank.com with fields that initiate a
transaction to the hacker’s account.

The browser sends cookies every time you visit the site bank.com , even if the form
was submitted from evil.com . So the bank recognizes you and actually performs
the payment.

<form action="https://bank.com/pay">
....
</form>

evil.com

got the cookie?
okay!

bank.com

POST /pay
cookie: user=John

That’s called a “Cross-Site Request Forgery” (in short, XSRF) attack.

Real banks are protected from it of course. All forms generated by bank.com have
a special field, so called “XSRF protection token”, that an evil page can’t generate or
extract from a remote page (it can submit a form there, but can’t get the data back).
And the site bank.com checks for such token in every form it receives.

// assuming we're on https:// now

// set the cookie secure (only accessible if over HTTPS)

document.cookie = "user=John; secure";

samesite

●

●

But such protection takes time to implement: we need to ensure that every form has
the token field, and we must also check all requests.

Enter cookie samesite option
The cookie samesite option provides another way to protect from such attacks,
that (in theory) should not require “xsrf protection tokens”.

It has two possible values:

samesite=strict (same as samesite without value)

A cookie with samesite=strict is never sent if the user comes from outside the
same site.

In other words, whether a user follows a link from their mail or submits a form from
evil.com , or does any operation that originates from another domain, the cookie
is not sent.

If authentication cookies have samesite option, then XSRF attack has no chances
to succeed, because a submission from evil.com comes without cookies. So
bank.com will not recognize the user and will not proceed with the payment.

The protection is quite reliable. Only operations that come from bank.com will send
the samesite cookie, e.g. a form submission from another page at bank.com .

Although, there’s a small inconvenience.

When a user follows a legitimate link to bank.com , like from their own notes, they’ll
be surprised that bank.com does not recognize them. Indeed,
samesite=strict cookies are not sent in that case.

We could work around that by using two cookies: one for “general recognition”, only
for the purposes of saying: “Hello, John”, and the other one for data-changing
operations with samesite=strict . Then a person coming from outside of the site
will see a welcome, but payments must be initiated from the bank website, for the
second cookie to be sent.

samesite=lax

A more relaxed approach that also protects from XSRF and doesn’t break user
experience.

Lax mode, just like strict , forbids the browser to send cookies when coming from
outside the site, but adds an exception.

A samesite=lax cookie is sent if both of these conditions are true:

1. The HTTP method is “safe” (e.g. GET, but not POST).

The full list of safe HTTP methods is in the RFC7231 specification  . Basically,
these are the methods that should be used for reading, but not writing the data.

https://tools.ietf.org/html/rfc7231

●

They must not perform any data-changing operations. Following a link is always
GET, the safe method.

2. The operation performs top-level navigation (changes URL in the browser address
bar).

That’s usually true, but if the navigation is performed in an <iframe> , then it’s
not top-level. Also, JavaScript methods for network requests do not perform any
navigation, hence they don’t fit.

So, what samesite=lax does is basically allows a most common “go to URL”
operation to have cookies. E.g. opening a website link from notes satisfies these
conditions.

But anything more complicated, like a network request from another site or a form
submittion loses cookies.

If that’s fine for you, then adding samesite=lax will probably not break the user
experience and add protection.

Overall, samesite is a great option, but it has an important drawback:

samesite is ignored (not supported) by old browsers, year 2017 or so.

So if we solely rely on samesite to provide protection, then old browsers will
be vulnerable.

But we surely can use samesite together with other protection measures, like xsrf
tokens, to add an additional layer of defence and then, in the future, when old
browsers die out, we’ll probably be able to drop xsrf tokens.

This option has nothing to do with JavaScript, but we have to mention it for
completeness.

The web-server uses Set-Cookie header to set a cookie. And it may set the
httpOnly option.

This option forbids any JavaScript access to the cookie. We can’t see such cookie or
manipulate it using document.cookie .

That’s used as a precaution measure, to protect from certain attacks when a hacker
injects his own JavaScript code into a page and waits for a user to visit that page.
That shouldn’t be possible at all, a hacker should not be able to inject their code into
our site, but there may be bugs that let hackers do it.

Normally, if such thing happens, and a user visits a web-page with hacker’s
JavaScript code, then that code executes and gains access to document.cookie
with user cookies containing authentication information. That’s bad.

httpOnly

But if a cookie is httpOnly , then document.cookie doesn’t see it, so it is
protected.

Here’s a small set of functions to work with cookies, more convenient than a manual
modification of document.cookie .

There exist many cookie libraries for that, so these are for demo purposes. Fully
working though.

getCookie(name)
The shortest way to access cookie is to use a regular expression.

The function getCookie(name) returns the cookie with the given name :

Here new RegExp is generated dynamically, to match ; name=<value> .

Please note that a cookie value is encoded, so getCookie uses a built-in
decodeURIComponent function to decode it.

setCookie(name, value, options)
Sets the cookie name to the given value with path=/ by default (can be
modified to add other defaults):

Appendix: Cookie functions

// returns the cookie with the given name,

// or undefined if not found

function getCookie(name) {

 let matches = document.cookie.match(new RegExp(

 "(?:^|;)" + name.replace(/([\.$?*|{}\(\)\[\]\\\/\+^])/g, '\\$1') + "=([^;]*)"

));

 return matches ? decodeURIComponent(matches[1]) : undefined;

}

function setCookie(name, value, options = {}) {

 options = {

 path: '/',

 // add other defaults here if necessary

 ...options

 };

 if (options.expires && options.expires.toUTCString) {

 options.expires = options.expires.toUTCString();

 }

 let updatedCookie = encodeURIComponent(name) + "=" + encodeURIComponent(value);

deleteCookie(name)
To delete a cookie, we can call it with a negative expiration date:

⚠ Updating or deleting must use same path and domain

Please note: when we update or delete a cookie, we should use exactly the
same path and domain options as when we set it.

Together: cookie.js.

A cookie is called “third-party” if it’s placed by domain other than the page user is
visiting.

For instance:

1. A page at site.com loads a banner from another site: .

2. Along with the banner, the remote server at ads.com may set Set-Cookie
header with cookie like id=1234 . Such cookie originates from ads.com
domain, and will only be visible at ads.com :

 for (let optionKey in options) {

 updatedCookie += "; " + optionKey;

 let optionValue = options[optionKey];

 if (optionValue !== true) {

 updatedCookie += "=" + optionValue;

 }

 }

 document.cookie = updatedCookie;

}

// Example of use:

setCookie('user', 'John', {secure: true, 'max-age': 3600});

function deleteCookie(name) {

 setCookie(name, "", {

 'max-age': -1

 })

}

Appendix: Third-party cookies

https://javascript.info/article/cookie/cookie.js

●

site.com ads.com

GET /banner.png

Set-Cookie: id=123

3. Next time when ads.com is accessed, the remote server gets the id cookie
and recognizes the user:

site.com ads.com

GET /banner.png
cookie: id=123

4. What’s even more important, when the users moves from site.com to another
site other.com that also has a banner, then ads.com gets the cookie, as it
belongs to ads.com , thus recognizing the visitor and tracking him as he moves
between sites:

other.com ads.com

GET /banner.png
cookie: id=123

Third-party cookies are traditionally used for tracking and ads services, due to their
nature. They are bound to the originating domain, so ads.com can track the same
user between different sites, if they all access it.

Naturally, some people don’t like being tracked, so browsers allow to disable such
cookies.

Also, some modern browsers employ special policies for such cookies:

Safari does not allow third-party cookies at all.

● Firefox comes with a “black list” of third-party domains where it blocks third-party
cookies.

 Please note:

If we load a script from a third-party domain, like <script
src="https://google-analytics.com/analytics.js"> , and that
script uses document.cookie to set a cookie, then such cookie is not third-
party.

If a script sets a cookie, then no matter where the script came from – the cookie
belongs to the domain of the current webpage.

This topic is not related to JavaScript at all, just something to keep in mind when
setting cookies.

There’s a legislation in Europe called GDPR, that enforces a set of rules for websites
to respect users’ privacy. And one of such rules is to require an explicit permission
for tracking cookies from a user.

Please note, that’s only about tracking/identifying/authorizing cookies.

So, if we set a cookie that just saves some information, but neither tracks nor
identifies the user, then we are free to do it.

But if we are going to set a cookie with an authentication session or a tracking id,
then a user must allow that.

Websites generally have two variants of following GDPR. You must have seen them
both already in the web:

1. If a website wants to set tracking cookies only for authenticated users.

To do so, the registration form should have a checkbox like “accept the privacy
policy” (that describes how cookies are used), the user must check it, and then the
website is free to set auth cookies.

2. If a website wants to set tracking cookies for everyone.

To do so legally, a website shows a modal “splash screen” for newcomers, and
require them to agree for cookies. Then the website can set them and let people
see the content. That can be disturbing for new visitors though. No one likes to
see “must-click” modal splash screens instead of the content. But GDPR requires
an explicit agreement.

GDPR is not only about cookies, it’s about other privacy-related issues too, but that’s
too much beyond our scope.

Appendix: GDPR

●

●

●

●

●

●

●

●

●

●

●

●

●

document.cookie provides access to cookies

write operations modify only cookies mentioned in it.

name/value must be encoded.

one cookie up to 4kb, 20+ cookies per site (depends on a browser).

Cookie options:

path=/ , by default current path, makes the cookie visible only under that path.

domain=site.com , by default a cookie is visible on current domain only, if set
explicitly to the domain, makes the cookie visible on subdomains.

expires or max-age sets cookie expiration time, without them the cookie dies
when the browser is closed.

secure makes the cookie HTTPS-only.

samesite forbids the browser to send the cookie with requests coming from
outside the site, helps to prevent XSRF attacks.

Additionally:

Third-party cookies may be forbidden by the browser, e.g. Safari does that by
default.

When setting a tracking cookie for EU citizens, GDPR requires to ask for
permission.

Web storage objects localStorage and sessionStorage allow to save
key/value pairs in the browser.

What’s interesting about them is that the data survives a page refresh (for
sessionStorage) and even a full browser restart (for localStorage). We’ll
see that very soon.

We already have cookies. Why additional objects?

Unlike cookies, web storage objects are not sent to server with each request.
Because of that, we can store much more. Most browsers allow at least 2
megabytes of data (or more) and have settings to configure that.

Also unlike cookies, the server can’t manipulate storage objects via HTTP
headers. Everything’s done in JavaScript.

The storage is bound to the origin (domain/protocol/port triplet). That is, different
protocols or subdomains infer different storage objects, they can’t access data
from each other.

Summary

LocalStorage, sessionStorage

●

●

●

●

●

●

●

●

Both storage objects provide same methods and properties:

setItem(key, value) – store key/value pair.

getItem(key) – get the value by key.

removeItem(key) – remove the key with its value.

clear() – delete everything.

key(index) – get the key on a given position.

length – the number of stored items.

As you can see, it’s like a Map collection (setItem/getItem/removeItem), but
also keeps elements order and allows to access by index with key(index) .

Let’s see how it works.

The main features of localStorage are:

Shared between all tabs and windows from the same origin.

The data does not expire. It remains after the browser restart and even OS reboot.

For instance, if you run this code…

…And close/open the browser or just open the same page in a different window,
then you can get it like this:

We only have to be on the same origin (domain/port/protocol), the url path can be
different.

The localStorage is shared between all windows with the same origin, so if we
set the data in one window, the change becomes visible in another one.

We can also use a plain object way of getting/setting keys, like this:

localStorage demo

localStorage.setItem('test', 1);

alert(localStorage.getItem('test')); // 1

Object-like access

// set key

localStorage.test = 2;

That’s allowed for historical reasons, and mostly works, but generally not
recommended, because:

1. If the key is user-generated, it can be anything, like length or toString , or
another built-in method of localStorage . In that case getItem/setItem
work fine, while object-like access fails:

2. There’s a storage event, it triggers when we modify the data. That event does
not happen for object-like access. We’ll see that later in this chapter.

As we’ve seen, the methods provide “get/set/remove by key” functionality. But how to
get all saved values or keys?

Unfortunately, storage objects are not iterable.

One way is to loop over them as over an array:

Another way is to use for key in localStorage loop, just as we do with
regular objects.

It iterates over keys, but also outputs few built-in fields that we don’t need:

// get key

alert(localStorage.test); // 2

// remove key

delete localStorage.test;

let key = 'length';

localStorage[key] = 5; // Error, can't assign length

Looping over keys

for(let i=0; i<localStorage.length; i++) {

 let key = localStorage.key(i);

 alert(`${key}: ${localStorage.getItem(key)}`);

}

// bad try

for(let key in localStorage) {

 alert(key); // shows getItem, setItem and other built-in stuff

}

…So we need either to filter fields from the prototype with hasOwnProperty
check:

…Or just get the “own” keys with Object.keys and then loop over them if
needed:

The latter works, because Object.keys only returns the keys that belong to the
object, ignoring the prototype.

Please note that both key and value must be strings.

If were any other type, like a number, or an object, it gets converted to string
automatically:

We can use JSON to store objects though:

Also it is possible to stringify the whole storage object, e.g. for debugging purposes:

for(let key in localStorage) {

 if (!localStorage.hasOwnProperty(key)) {

 continue; // skip keys like "setItem", "getItem" etc

 }

 alert(`${key}: ${localStorage.getItem(key)}`);

}

let keys = Object.keys(localStorage);

for(let key of keys) {

 alert(`${key}: ${localStorage.getItem(key)}`);

}

Strings only

sessionStorage.user = {name: "John"};

alert(sessionStorage.user); // [object Object]

sessionStorage.user = JSON.stringify({name: "John"});

// sometime later

let user = JSON.parse(sessionStorage.user);

alert(user.name); // John

●

●

●

●

●

●

●

●

The sessionStorage object is used much less often than localStorage .

Properties and methods are the same, but it’s much more limited:

The sessionStorage exists only within the current browser tab.

Another tab with the same page will have a different storage.

But it is shared between iframes in the same tab (assuming they come from the
same origin).

The data survives page refresh, but not closing/opening the tab.

Let’s see that in action.

Run this code…

…Then refresh the page. Now you can still get the data:

…But if you open the same page in another tab, and try again there, the code above
returns null , meaning “nothing found”.

That’s exactly because sessionStorage is bound not only to the origin, but also
to the browser tab. For that reason, sessionStorage is used sparingly.

When the data gets updated in localStorage or sessionStorage , storage 
event triggers, with properties:

key – the key that was changed (null if .clear() is called).

oldValue – the old value (null if the key is newly added).

newValue – the new value (null if the key is removed).

url – the url of the document where the update happened.

// added formatting options to JSON.stringify to make the object look nicer

alert(JSON.stringify(localStorage, null, 2));

sessionStorage

sessionStorage.setItem('test', 1);

alert(sessionStorage.getItem('test')); // after refresh: 1

Storage event

https://www.w3.org/TR/webstorage/#the-storage-event

●

●

●

●

●

storageArea – either localStorage or sessionStorage object where
the update happened.

The important thing is: the event triggers on all window objects where the storage
is accessible, except the one that caused it.

Let’s elaborate.

Imagine, you have two windows with the same site in each. So localStorage is
shared between them.

If both windows are listening for window.onstorage , then each one will react on
updates that happened in the other one.

Please note that the event also contains: event.url – the url of the document
where the data was updated.

Also, event.storageArea contains the storage object – the event is the same
for both sessionStorage and localStorage , so event.storageArea
references the one that was modified. We may even want to set something back in it,
to “respond” to a change.

That allows different windows from the same origin to exchange messages.

Modern browsers also support Broadcast channel API  , the special API for same-
origin inter-window communication, it’s more full featured, but less supported. There
are libraries that polyfill that API, based on localStorage , that make it available
everywhere.

Web storage objects localStorage and sessionStorage allow to store
key/value in the browser.

Both key and value must be strings.

The limit is 2mb+, depends on the browser.

They do not expire.

The data is bound to the origin (domain/port/protocol).

// triggers on updates made to the same storage from other documents

window.onstorage = event => {

 if (event.key != 'now') return;

 alert(event.key + ':' + event.newValue + " at " + event.url);

};

localStorage.setItem('now', Date.now());

Summary

https://developer.mozilla.org/en-US/docs/Web/API/Broadcast_Channel_API

●

●

●

●

●

●

●

●

●

●

●

localStorage sessionStorage

Shared between all tabs and windows with the

same origin

Visible within a browser tab, including iframes from the

same origin

Survives browser restart Survives page refresh (but not tab close)

API:

setItem(key, value) – store key/value pair.

getItem(key) – get the value by key.

removeItem(key) – remove the key with its value.

clear() – delete everything.

key(index) – get the key number index .

length – the number of stored items.

Use Object.keys to get all keys.

We access keys as object properties, in that case storage event isn’t triggered.

Storage event:

Triggers on setItem , removeItem , clear calls.

Contains all the data about the operation (key/oldValue/newValue), the
document url and the storage object storageArea .

Triggers on all window objects that have access to the storage except the one
that generated it (within a tab for sessionStorage , globally for
localStorage).

Autosave a form field

Create a textarea field that “autosaves” its value on every change.

So, if the user accidentally closes the page, and opens it again, he’ll find his
unfinished input at place.

Like this:

✔ Tasks

Write here

Clear

●

●

●

●

●

●

Open a sandbox for the task. 

To solution

IndexedDB is a built-in database, much more powerful than localStorage .

Key/value storage: value can be (almost) anything, multiple key types.

Supports transactions for reliability.

Supports key range queries, indexes.

Can store much more data than localStorage .

That power is usually excessive for traditional client-server apps. IndexedDB is
intended for offline apps, to be combined with ServiceWorkers and other
technologies.

The native interface to IndexedDB, described in the specification
https://www.w3.org/TR/IndexedDB  , is event-based.

We can also use async/await with the help of a promise-based wrapper, like
https://github.com/jakearchibald/idb  . That’s pretty convenient, but the wrapper is
not perfect, it can’t replace events for all cases. So we’ll start with events, and then,
after we gain understanding of IndexedDb, we’ll use the wrapper.

To start working with IndexedDB, we first need to open a database.

The syntax:

name – a string, the database name.

version – a positive integer version, by default 1 (explained below).

We can have many databases with different names, but all of them exist within the
current origin (domain/protocol/port). Different websites can’t access databases of
each other.

After the call, we need to listen to events on openRequest object:

IndexedDB

Open database

let openRequest = indexedDB.open(name, version);

https://plnkr.co/edit/mjkNKiIpvQvgXagIpxoN?p=preview
https://www.w3.org/TR/IndexedDB
https://github.com/jakearchibald/idb

●

●

●

success : database is ready, there’s the “database object” in
openRequest.result , that we should use it for further calls.

error : opening failed.

upgradeneeded : database is ready, but its version is outdated (see below).

IndexedDB has a built-in mechanism of “schema versioning”, absent in server-
side databases.

Unlike server-side databases, IndexedDB is client-side, the data is stored in the
browser, so we, developers, don’t have direct access to it. But when we publish a
new version of our app, we may need to update the database.

If the local database version is less than specified in open , then a special event
upgradeneeded is triggered, and we can compare versions and upgrade data
structures as needed.

The event also triggers when the database did not exist yet, so we can perform
initialization.

When we first publish our app, we open it with version 1 and perform the
initialization in upgradeneeded handler:

When we publish the 2nd version:

 let openRequest = indexedDB.open("store", 1);

openRequest.onupgradeneeded = function() {

 // triggers if the client had no database

 // ...perform initialization...

};

openRequest.onerror = function() {

 console.error("Error", openRequest.error);

};

openRequest.onsuccess = function() {

 let db = openRequest.result;

 // continue to work with database using db object

};

 let openRequest = indexedDB.open("store", 2);

openRequest.onupgradeneeded = function() {

 // the existing database version is less than 2 (or it doesn't exist)

 let db = openRequest.result;

 switch(db.version) { // existing db version

 case 0:

 // version 0 means that the client had no database

So, in openRequest.onupgradeneeded we update the database. Soon we’ll
see how it’s done. And then, only if its handler finishes without errors,
openRequest.onsuccess triggers.

After openRequest.onsuccess we have the database object in
openRequest.result , that we’ll use for further operations.

To delete a database:

⚠ Can we open an old version?

Now what if we try to open a database with a lower version than the current one?
E.g. the existing DB version is 3, and we try to open(...2) .

That’s an error, openRequest.onerror triggers.

Such thing may happen if the visitor loaded an outdated code, e.g. from a proxy
cache. We should check db.version , suggest him to reload the page. And
also re-check our caching headers to ensure that the visitor never gets old code.

Parallel update problem
As we’re talking about versioning, let’s tackle a small related problem.

Let’s say, a visitor opened our site in a browser tab, with database version 1.

Then we rolled out an update, and the same visitor opens our site in another tab. So
there are two tabs, both with our site, but one has an open connection with DB
version 1, while the other one attempts to update it in upgradeneeded handler.

The problem is that a database is shared between two tabs, as that’s the same site,
same origin. And it can’t be both version 1 and 2. To perform the update to version 2,
all connections to version 1 must be closed.

In order to organize that, the versionchange event triggers an open database
object when a parallel upgrade is attempted. We should listen to it, so that we should
close the database (and probably suggest the visitor to reload the page, to load the
updated code).

 // perform initialization

 case 1:

 // client had version 1

 // update

 }

};

let deleteRequest = indexedDB.deleteDatabase(name)

// deleteRequest.onsuccess/onerror tracks the result

If we don’t close it, then the second, new connection will be blocked with blocked
event instead of success .

Here’s the code to do that:

Here we do two things:

1. Add db.onversionchange listener after a successful opening, to be informed
about a parallel update attempt.

2. Add openRequest.onblocked listener to handle the case when an old
connection wasn’t closed. This doesn’t happen if we close it in
db.onversionchange .

There are other variants. For example, we can take time to close things gracefully in
db.onversionchange , prompt the visitor to save the data before the connection
is closed. The new updating connection will be blocked immediatelly after
db.onversionchange finished without closing, and we can ask the visitor in the
new tab to close other tabs for the update.

Such update collision happens rarely, but we should at least have some handling for
it, e.g. onblocked handler, so that our script doesn’t surprise the user by dying
silently.

To store something in IndexedDB, we need an object store.

let openRequest = indexedDB.open("store", 2);

openRequest.onupgradeneeded = ...;

openRequest.onerror = ...;

openRequest.onsuccess = function() {

 let db = openRequest.result;

 db.onversionchange = function() {

 db.close();

 alert("Database is outdated, please reload the page.")

 };

 // ...the db is ready, use it...

};

openRequest.onblocked = function() {

 // there's another open connection to same database

 // and it wasn't closed after db.onversionchange triggered for them

};

Object store

●

●

An object store is a core concept of IndexedDB. Counterparts in other databases are
called “tables” or “collections”. It’s where the data is stored. A database may have
multiple stores: one for users, another one for goods, etc.

Despite being named an “object store”, primitives can be stored too.

We can store almost any value, including complex objects.

IndexedDB uses the standard serialization algorithm  to clone-and-store an object.
It’s like JSON.stringify , but more powerful, capable of storing much more
datatypes.

An example of object that can’t be stored: an object with circular references. Such
objects are not serializable. JSON.stringify also fails for such objects.

There must be a unique key for every value in the store.

A key must have a type one of: number, date, string, binary, or array. It’s an unique
identifier: we can search/remove/update values by the key.

key1: value1

Database

objectStore

objectStore

key3: value3

key2: value2

key4: value4

key5: value5

objectStore

key1: value1

key3: value3

key2: value2

key4: value4

key5: value5

key1: value1

key3: value3

key2: value2

key4: value4

key5: value5

As we’ll see very soon, we can provide a key when we add a value to the store,
similar to localStorage . But when we store objects, IndexedDB allows to setup
an object property as the key, that’s much more convenient. Or we can auto-
generate keys.

But we need to create an object store first.

The syntax to create an object store:

Please note, the operation is synchronous, no await needed.

name is the store name, e.g. "books" for books,

keyOptions is an optional object with one of two properties:

db.createObjectStore(name[, keyOptions]);

https://www.w3.org/TR/html53/infrastructure.html#section-structuredserializeforstorage

●

●

keyPath – a path to an object property that IndexedDB will use as the key,
e.g. id .

autoIncrement – if true , then the key for a newly stored object is
generated automatically, as an ever-incrementing number.

If we don’t supply keyOptions , then we’ll need to provide a key explicitly later,
when storing an object.

For instance, this object store uses id property as the key:

An object store can only be created/modified while updating the DB version, in
upgradeneeded handler.

That’s a technical limitation. Outside of the handler we’ll be able to
add/remove/update the data, but object stores can be created/removed/altered only
during version update.

To perform database version upgrade, there are two main approaches:

1. We can implement per-version upgrade functions: from 1 to 2, from 2 to 3, from 3
to 4 etc. Then, in upgradeneeded we can compare versions (e.g. old 2, now 4)
and run per-version upgrades step by step, for every intermediate version (2 to 3,
then 3 to 4).

2. Or we can just examine the database: get a list of existing object stores as
db.objectStoreNames . That object is a DOMStringList  that provides
contains(name) method to check for existance. And then we can do updates
depending on what exists and what doesn’t.

For small databases the second variant may be simpler.

Here’s the demo of the second approach:

To delete an object store:

db.createObjectStore('books', {keyPath: 'id'});

let openRequest = indexedDB.open("db", 2);

// create/upgrade the database without version checks

openRequest.onupgradeneeded = function() {

 let db = openRequest.result;

 if (!db.objectStoreNames.contains('books')) { // if there's no "books" store

 db.createObjectStore('books', {keyPath: 'id'}); // create it

 }

};

https://html.spec.whatwg.org/multipage/common-dom-interfaces.html#domstringlist

●

●

●

●

The term “transaction” is generic, used in many kinds of databases.

A transaction is a group operations, that should either all succeed or all fail.

For instance, when a person buys something, we need:

1. Subtract the money from their account.

2. Add the item to their inventory.

It would be pretty bad if we complete the 1st operation, and then something goes
wrong, e.g. lights out, and we fail to do the 2nd. Both should either succeed
(purchase complete, good!) or both fail (at least the person kept their money, so they
can retry).

Transactions can guarantee that.

All data operations must be made within a transaction in IndexedDB.

To start a transaction:

store is a store name that the transaction is going to access, e.g. "books" .
Can be an array of store names if we’re going to access multiple stores.

type – a transaction type, one of:

readonly – can only read, the default.

readwrite – can only read and write the data, but not create/remove/alter
object stores.

There’s also versionchange transaction type: such transactions can do
everything, but we can’t create them manually. IndexedDB automatically creates a
versionchange transaction when opening the database, for updateneeded
handler. That’s why it’s a single place where we can update the database structure,
create/remove object stores.

db.deleteObjectStore('books')

Transactions

db.transaction(store[, type]);

●

 Why there exist different types of transactions?

Performance is the reason why transactions need to be labeled either
readonly and readwrite .

Many readonly transactions are able to access concurrently the same store,
but readwrite transactions can’t. A readwrite transaction “locks” the store
for writing. The next transaction must wait before the previous one finishes
before accessing the same store.

After the transaction is created, we can add an item to the store, like this:

There were basically four steps:

1. Create a transaction, mention all stores it’s going to access, at (1) .

2. Get the store object using transaction.objectStore(name) , at (2) .

3. Perform the request to the object store books.add(book) , at (3) .

4. …Handle request success/error (4) , then we can make other requests if
needed, etc.

Object stores support two methods to store a value:

put(value, [key]) Add the value to the store. The key is supplied only if the
object store did not have keyPath or autoIncrement option. If there’s
already a value with same key, it will be replaced.

let transaction = db.transaction("books", "readwrite"); // (1)

// get an object store to operate on it

let books = transaction.objectStore("books"); // (2)

let book = {

 id: 'js',

 price: 10,

 created: new Date()

};

let request = books.add(book); // (3)

request.onsuccess = function() { // (4)

 console.log("Book added to the store", request.result);

};

request.onerror = function() {

 console.log("Error", request.error);

};

●

●

●

add(value, [key]) Same as put , but if there’s already a value with the same key,
then the request fails, and an error with the name "ConstraintError" is
generated.

Similar to opening a database, we can send a request: books.add(book) , and
then wait for success/error events.

The request.result for add is the key of the new object.

The error is in request.error (if any).

In the example above we started the transaction and made add request. But as we
stated previously, a transaction may have multiple associated requests, that must
either all success or all fail. How do we mark the transaction as finished, no more
requests to come?

The short answer is: we don’t.

In the next version 3.0 of the specification, there will probably be a manual way to
finish the transaction, but right now in 2.0 there isn’t.

When all transaction requests are finished, and the microtasks queue is empty,
it is committed automatically.

Usually, we can assume that a transaction commits when all its requests are
complete, and the current code finishes.

So, in the example above no special call is needed to finish the transaction.

Transactions auto-commit principle has an important side effect. We can’t insert an
async operation like fetch , setTimeout in the middle of transaction. IndexedDB
will not keep the transaction waiting till these are done.

In the code below request2 in line (*) fails, because the transaction is already
committed, can’t make any request in it:

Transactions’ autocommit

let request1 = books.add(book);

request1.onsuccess = function() {

 fetch('/').then(response => {

 let request2 = books.add(anotherBook); // (*)

 request2.onerror = function() {

 console.log(request2.error.name); // TransactionInactiveError

 };

 });

};

https://javascript.info/microtask-queue

That’s because fetch is an asynchronous operation, a macrotask. Transactions
are closed before the browser starts doing macrotasks.

Authors of IndexedDB spec believe that transactions should be short-lived. Mostly
for performance reasons.

Notably, readwrite transactions “lock” the stores for writing. So if one part of
application initiated readwrite on books object store, then another part that
wants to do the same has to wait: the new transaction “hangs” till the first one is
done. That can lead to strange delays if transactions take a long time.

So, what to do?

In the example above we could make a new db.transaction right before the
new request (*) .

But it will be even better, if we’d like to keep the operations together, in one
transaction, to split apart IndexedDB transactions and “other” async stuff.

First, make fetch , prepare the data if needed, afterwards create a transaction and
perform all the database requests, it’ll work then.

To detect the moment of successful completion, we can listen to
transaction.oncomplete event:

Only complete guarantees that the transaction is saved as a whole. Individual
requests may succeed, but the final write operation may go wrong (e.g. I/O error or
something).

To manually abort the transaction, call:

That cancels all modification made by the requests in it and triggers
transaction.onabort event.

let transaction = db.transaction("books", "readwrite");

// ...perform operations...

transaction.oncomplete = function() {

 console.log("Transaction is complete");

};

transaction.abort();

Error handling

Write requests may fail.

That’s to be expected, not only because of possible errors at our side, but also for
reasons not related to the transaction itself. For instance, the storage quota may be
exceeded. So we must be ready to handle such case.

A failed request automatically aborts the transaction, canceling all its changes.

In some situations, we may want to handle the failure (e.g. try another request),
without canceling existing changes, and continue the transaction. That’s possible.
The request.onerror handler is able to prevent the transaction abort by calling
event.preventDefault() .

In the example below a new book is added with the same key (id) as the existing
one. The store.add method generates a "ConstraintError" in that case.
We handle it without canceling the transaction:

Event delegation
Do we need onerror/onsuccess for every request? Not every time. We can use event
delegation instead.

IndexedDB events bubble: request → transaction → database .

All events are DOM events, with capturing and bubbling, but usually only bubbling
stage is used.

So we can catch all errors using db.onerror handler, for reporting or other
purposes:

let transaction = db.transaction("books", "readwrite");

let book = { id: 'js', price: 10 };

let request = transaction.objectStore("books").add(book);

request.onerror = function(event) {

 // ConstraintError occurs when an object with the same id already exists

 if (request.error.name == "ConstraintError") {

 console.log("Book with such id already exists"); // handle the error

 event.preventDefault(); // don't abort the transaction

 // use another key for the book?

 } else {

 // unexpected error, can't handle it

 // the transaction will abort

 }

};

transaction.onabort = function() {

 console.log("Error", transaction.error);

};

●

●

●

…But what if an error is fully handled? We don’t want to report it in that case.

We can stop the bubbling and hence db.onerror by using
event.stopPropagation() in request.onerror .

There are two main types of search in an object store:

1. By a key or a key range. That is: by book.id in our “books” storage.

2. By another object field, e.g. book.price .

First let’s deal with the keys and key ranges (1) .

Methods that involve searching support either exact keys or so-called “range
queries” – IDBKeyRange  objects that specify a “key range”.

Ranges are created using following calls:

IDBKeyRange.lowerBound(lower, [open]) means: >lower (or
≥lower if open is true)

IDBKeyRange.upperBound(upper, [open]) means: <upper (or
≤upper if open is true)

IDBKeyRange.bound(lower, upper, [lowerOpen], [upperOpen])
means: between lower and upper , with optional equality if the corresponding
open is true.

db.onerror = function(event) {

 let request = event.target; // the request that caused the error

 console.log("Error", request.error);

};

request.onerror = function(event) {

 if (request.error.name == "ConstraintError") {

 console.log("Book with such id already exists"); // handle the error

 event.preventDefault(); // don't abort the transaction

 event.stopPropagation(); // don't bubble error up, "chew" it

 } else {

 // do nothing

 // transaction will be aborted

 // we can take care of error in transaction.onabort

 }

};

Searching by keys

https://www.w3.org/TR/IndexedDB/#keyrange

●

●

●

●

●

●

IDBKeyRange.only(key) – a range that consists of only one key , rarely
used.

All searching methods accept a query argument that can be either an exact key or
a key range:

store.get(query) – search for the first value by a key or a range.

store.getAll([query], [count]) – search for all values, limit by count
if given.

store.getKey(query) – search for the first key that satisfies the query,
usually a range.

store.getAllKeys([query], [count]) – search for all keys that satisfy
the query, usually a range, up to count if given.

store.count([query]) – get the total count of keys that satisfy the query,
usually a range.

For instance, we have a lot of books in our store. Remember, the id field is the key,
so all these methods can search by id .

Request examples:

 Object store is always sorted

Object store sorts values by key internally.

So requests that return many values always return them in sorted by key order.

// get one book

books.get('js')

// get books with 'css' < id < 'html'

books.getAll(IDBKeyRange.bound('css', 'html'))

// get books with 'html' <= id

books.getAll(IDBKeyRange.lowerBound('html', true))

// get all books

books.getAll()

// get all keys: id >= 'js'

books.getAllKeys(IDBKeyRange.lowerBound('js', true))

Searching by any field with an index

●

●

●

●

●

●

●

●

To search by other object fields, we need to create an additional data structure
named “index”.

An index is an “add-on” to the store that tracks a given object field. For each value of
that field, it stores a list of keys for objects that have that value. There will be a more
detailed picture below.

The syntax:

name – index name,

keyPath – path to the object field that the index should track (we’re going to
search by that field),

option – an optional object with properties:

unique – if true, then there may be only one object in the store with the given
value at the keyPath . The index will enforce that by generating an error if we
try to add a duplicate.

multiEntry – only used if the value on keyPath is an array. In that case,
by default, the index will treat the whole array as the key. But if multiEntry
is true, then the index will keep a list of store objects for each value in that
array. So array members become index keys.

In our example, we store books keyed by id .

Let’s say we want to search by price .

First, we need to create an index. It must be done in upgradeneeded , just like an
object store:

The index will track price field.

The price is not unique, there may be multiple books with the same price, so we
don’t set unique option.

The price is not an array, so multiEntry flag is not applicable.

Imagine that our inventory has 4 books. Here’s the picture that shows exactly
what the index is:

objectStore.createIndex(name, keyPath, [options]);

openRequest.onupgradeneeded = function() {

 // we must create the index here, in versionchange transaction

 let books = db.createObjectStore('books', {keyPath: 'id'});

 let index = inventory.createIndex('price_idx', 'price');

};

id: 'html'
price: 3

id: 'css'
price: 5

3: ['html']

5: ['css']

10: ['js','nodejs']

id: 'js'
price: 10

id: 'nodejs'
price: 10

books index

As said, the index for each value of price (second argument) keeps the list of keys
that have that price.

The index keeps itself up to date automatically, we don’t have to care about it.

Now, when we want to search for a given price, we simply apply the same search
methods to the index:

We can also use IDBKeyRange to create ranges and looks for cheap/expensive
books:

Indexes are internally sorted by the tracked object field, price in our case. So
when we do the search, the results are also sorted by price .

let transaction = db.transaction("books"); // readonly

let books = transaction.objectStore("books");

let priceIndex = books.index("price_idx");

let request = priceIndex.getAll(10);

request.onsuccess = function() {

 if (request.result !== undefined) {

 console.log("Books", request.result); // array of books with price=10

 } else {

 console.log("No such books");

 }

};

// find books where price < 5

let request = priceIndex.getAll(IDBKeyRange.upperBound(5));

Deleting from store

●

The delete method looks up values to delete by a query, the call format is similar
to getAll :

delete(query) – delete matching values by query.

For instance:

If we’d like to delete books based on a price or another object field, then we should
first find the key in the index, and then call delete :

To delete everything:

Methods like getAll/getAllKeys return an array of keys/values.

But an object storage can be huge, bigger than the available memory. Then
getAll will fail to get all records as an array.

What to do?

Cursors provide the means to work around that.

A cursor is a special object that traverses the object storage, given a query,
and returns one key/value at a time, thus saving memory.

As an object store is sorted internally by key, a cursor walks the store in key order
(ascending by default).

The syntax:

// delete the book with id='js'

books.delete('js');

// find the key where price = 5

let request = priceIndex.getKey(5);

request.onsuccess = function() {

 let id = request.result;

 let deleteRequest = books.delete(id);

};

books.clear(); // clear the storage.

Cursors

●

●

●

●

●

●

●

query is a key or a key range, same as for getAll .

direction is an optional argument, which order to use:

"next" – the default, the cursor walks up from the record with the lowest key.

"prev" – the reverse order: down from the record with the biggest key.

"nextunique" , "prevunique" – same as above, but skip records with
the same key (only for cursors over indexes, e.g. for multiple books with
price=5 only the first one will be returned).

The main difference of the cursor is that request.onsuccess triggers
multiple times: once for each result.

Here’s an example of how to use a cursor:

The main cursor methods are:

advance(count) – advance the cursor count times, skipping values.

continue([key]) – advance the cursor to the next value in range matching
(or immediately after key if given).

Whether there are more values matching the cursor or not – onsuccess gets
called, and then in result we can get the cursor pointing to the next record, or
undefined .

// like getAll, but with a cursor:

let request = store.openCursor(query, [direction]);

// to get keys, not values (like getAllKeys): store.openKeyCursor

let transaction = db.transaction("books");

let books = transaction.objectStore("books");

let request = books.openCursor();

// called for each book found by the cursor

request.onsuccess = function() {

 let cursor = request.result;

 if (cursor) {

 let key = cursor.key; // book key (id field)

 let value = cursor.value; // book object

 console.log(key, value);

 cursor.continue();

 } else {

 console.log("No more books");

 }

};

In the example above the cursor was made for the object store.

But we also can make a cursor over an index. As we remember, indexes allow to
search by an object field. Cursors over indexes to precisely the same as over object
stores – they save memory by returning one value at a time.

For cursors over indexes, cursor.key is the index key (e.g. price), and we should
use cursor.primaryKey property for the object key:

Adding onsuccess/onerror to every request is quite a cumbersome task.
Sometimes we can make our life easier by using event delegation, e.g. set handlers
on the whole transactions, but async/await is much more convenient.

Let’s use a thin promise wrapper https://github.com/jakearchibald/idb  further in
this chapter. It creates a global idb object with promisified IndexedDB methods.

Then, instead of onsuccess/onerror we can write like this:

let request = priceIdx.openCursor(IDBKeyRange.upperBound(5));

// called for each record

request.onsuccess = function() {

 let cursor = request.result;

 if (cursor) {

 let key = cursor.primaryKey; // next object store key (id field)

 let value = cursor.value; // next object store object (book object)

 let key = cursor.key; // next index key (price)

 console.log(key, value);

 cursor.continue();

 } else {

 console.log("No more books");

 }

};

Promise wrapper

let db = await idb.openDb('store', 1, db => {

 if (db.oldVersion == 0) {

 // perform the initialization

 db.createObjectStore('books', {keyPath: 'id'});

 }

});

let transaction = db.transaction('books', 'readwrite');

let books = transaction.objectStore('books');

try {

 await books.add(...);

 await books.add(...);

https://github.com/jakearchibald/idb
https://javascript.info/promisify

So we have all the sweet “plain async code” and “try…catch” stuff.

Error handling
If we don’t catch an error, then it falls through, till the closest outer try..catch .

An uncaught error becomes an “unhandled promise rejection” event on window
object.

We can handle such errors like this:

“Inactive transaction” pitfall
As we already know, a transaction auto-commits as soon as the browser is done with
the current code and microtasks. So if we put a macrotask like fetch in the middle
of a transaction, then the transaction won’t wait for it to finish. It just auto-commits.
So the next request in it would fail.

For a promise wrapper and async/await the situation is the same.

Here’s an example of fetch in the middle of the transaction:

The next inventory.add after fetch (*) fails with an “inactive transaction”
error, because the transaction is already committed and closed at that time.

 await transaction.complete;

 console.log('jsbook saved');

} catch(err) {

 console.log('error', err.message);

}

window.addEventListener('unhandledrejection', event => {

 let request = event.target; // IndexedDB native request object

 let error = event.reason; // Unhandled error object, same as request.error

 ...report about the error...

});

let transaction = db.transaction("inventory", "readwrite");

let inventory = transaction.objectStore("inventory");

await inventory.add({ id: 'js', price: 10, created: new Date() });

await fetch(...); // (*)

await inventory.add({ id: 'js', price: 10, created: new Date() }); // Error

●

●

●

●

The workaround is same as when working with native IndexedDB: either make a
new transaction or just split things apart.

1. Prepare the data and fetch all that’s needed first.

2. Then save in the database.

Getting native objects
Internally, the wrapper performs a native IndexedDB request, adding
onerror/onsuccess to it, and returns a promise that rejects/resolves with the
result.

That works fine most of the time. The examples are at the lib page
https://github.com/jakearchibald/idb  .

In few rare cases, when we need the original request object, we can access it as
promise.request property of the promise:

IndexedDB can be thought of as a “localStorage on steroids”. It’s a simple key-value
database, powerful enough for offline apps, yet simple to use.

The best manual is the specification, the current one  is 2.0, but few methods from
3.0  (it’s not much different) are partially supported.

The basic usage can be described with a few phrases:

1. Get a promise wrapper like idb  .

2. Open a database: idb.openDb(name, version, onupgradeneeded)

Create object storages and indexes in onupgradeneeded handler or perform
version update if needed.

3. For requests:

Create transaction db.transaction('books') (readwrite if needed).

Get the object store transaction.objectStore('books') .

4. Then, to search by a key, call methods on the object store directly.

To search by an object field, create an index.

let promise = books.add(book); // get a promise (don't await for its result)

let request = promise.request; // native request object

let transaction = request.transaction; // native transaction object

// ...do some native IndexedDB voodoo...

let result = await promise; // if still needed

Summary

https://github.com/jakearchibald/idb
https://w3c.github.io/IndexedDB
https://w3c.github.io/IndexedDB/
https://github.com/jakearchibald/idb

5. If the data does not fit in memory, use a cursor.

Here’s a small demo app:

https://plnkr.co/edit/QdxpvCQ02wYrpxdGr3Sm?p=preview 

CSS and JavaScript animations.

Bezier curves are used in computer graphics to draw shapes, for CSS animation and
in many other places.

They are a very simple thing, worth to study once and then feel comfortable in the
world of vector graphics and advanced animations.

A bezier curve  is defined by control points.

There may be 2, 3, 4 or more.

For instance, two points curve:

1

2

Three points curve:

1 3

2

Four points curve:

Animation

Bezier curve

Control points

https://plnkr.co/edit/QdxpvCQ02wYrpxdGr3Sm?p=preview
https://en.wikipedia.org/wiki/B%C3%A9zier_curve

1 2

3 4

If you look closely at these curves, you can immediately notice:

1. Points are not always on curve. That’s perfectly normal, later we’ll see how the
curve is built.

2. The curve order equals the number of points minus one. For two points we
have a linear curve (that’s a straight line), for three points – quadratic curve
(parabolic), for four points – cubic curve.

3. A curve is always inside the convex hull  of control points:

1 2

3 4

1 3

3

Because of that last property, in computer graphics it’s possible to optimize
intersection tests. If convex hulls do not intersect, then curves do not either. So
checking for the convex hulls intersection first can give a very fast “no intersection”
result. Checking the intersection or convex hulls is much easier, because they are
rectangles, triangles and so on (see the picture above), much simpler figures than
the curve.

The main value of Bezier curves for drawing – by moving the points the curve
is changing in intuitively obvious way.

Try to move control points using a mouse in the example below:

https://en.wikipedia.org/wiki/Convex_hull

As you can notice, the curve stretches along the tangential lines 1 → 2 and 3
→ 4.

After some practice it becomes obvious how to place points to get the needed curve.
And by connecting several curves we can get practically anything.

Here are some examples:

There’s a mathematical formula for Bezier curves, but let’s cover it a bit later,
because De Casteljau’s algorithm  it is identical to the mathematical definition and
visually shows how it is constructed.

First let’s see the 3-points example.

Here’s the demo, and the explanation follow.

Control points (1,2 and 3) can be moved by the mouse. Press the “play” button to run
it.

1 2

3 4

De Casteljau’s algorithm

https://en.wikipedia.org/wiki/De_Casteljau%27s_algorithm

●

●

De Casteljau’s algorithm of building the 3-point bezier curve:

1. Draw control points. In the demo above they are labeled: 1 , 2 , 3 .

2. Build segments between control points 1 → 2 → 3. In the demo above they are
brown.

3. The parameter t moves from 0 to 1 . In the example above the step 0.05 is
used: the loop goes over 0, 0.05, 0.1, 0.15, ... 0.95, 1 .

For each of these values of t :

On each brown segment we take a point located on the distance proportional to
t from its beginning. As there are two segments, we have two points.

For instance, for t=0 – both points will be at the beginning of segments, and
for t=0.25 – on the 25% of segment length from the beginning, for t=0.5 –
50%(the middle), for t=1 – in the end of segments.

Connect the points. On the picture below the connecting segment is painted
blue.

For t=0.25 For t=0.5

t:1

1

2

3

For t=0.25 For t=0.5

1 3

2

0.25
t = 0.25

0.25

1 3

2

0.5
t = 0.5 0.5

4. Now in the blue segment take a point on the distance proportional to the same
value of t . That is, for t=0.25 (the left picture) we have a point at the end of
the left quarter of the segment, and for t=0.5 (the right picture) – in the middle
of the segment. On pictures above that point is red.

5. As t runs from 0 to 1 , every value of t adds a point to the curve. The set of
such points forms the Bezier curve. It’s red and parabolic on the pictures above.

That was a process for 3 points. But the same is for 4 points.

The demo for 4 points (points can be moved by a mouse):

t:1

1 2

3 4

●

●

●

●

●

●

The algorithm for 4 points:

Connect control points by segments: 1 → 2, 2 → 3, 3 → 4. There will be 3 brown
segments.

For each t in the interval from 0 to 1 :

We take points on these segments on the distance proportional to t from the
beginning. These points are connected, so that we have two green segments.

On these segments we take points proportional to t . We get one blue
segment.

On the blue segment we take a point proportional to t . On the example above
it’s red.

These points together form the curve.

The algorithm is recursive and can be generalized for any number of control points.

Given N of control points:

1. We connect them to get initially N-1 segments.

2. Then for each t from 0 to 1 , we take a point on each segment on the distance
proportional to t and connect them. There will be N-2 segments.

3. Repeat step 2 until there is only one point.

These points make the curve.

A curve that looks like y=1/t :

Zig-zag control points also work fine:

t:1

1

2

3 4

Making a loop is possible:

A non-smooth Bezier curve (yeah, that’s possible too):

t:1

1

23

4

t:1

1

2

3

4

As the algorithm is recursive, we can build Bezier curves of any order, that is: using
5, 6 or more control points. But in practice many points are less useful. Usually we
take 2-3 points, and for complex lines glue several curves together. That’s simpler to
develop and calculate.

 How to draw a curve through given points?

To specify a Bezier curve, control points are used. As we can see, they are not
on the curve, except the first and the last ones.

Sometimes we have another task: to draw a curve through several points, so that
all of them are on a single smooth curve. That task is called interpolation  , and
here we don’t cover it.

There are mathematical formulas for such curves, for instance Lagrange
polynomial  . In computer graphics spline interpolation  is often used to build
smooth curves that connect many points.

A Bezier curve can be described using a mathematical formula.

As we saw – there’s actually no need to know it, most people just draw the curve by
moving points with a mouse. But if you’re into maths – here it is.

Given the coordinates of control points Pi : the first control point has coordinates P1
= (x1, y1) , the second: P2 = (x2, y2) , and so on, the curve coordinates are

described by the equation that depends on the parameter t from the segment
[0,1] .

t:1

1

23

4

Maths

https://en.wikipedia.org/wiki/Interpolation
https://en.wikipedia.org/wiki/Lagrange_polynomial
https://en.wikipedia.org/wiki/Spline_interpolation

●

●

●

●

●

●

●

●

●

The formula for a 2-points curve:

P = (1-t)P1 + tP2

For 3 control points:

P = (1−t)2P1 + 2(1−t)tP2 + t
2P3

For 4 control points:

P = (1−t)3P1 + 3(1−t)
2tP2 +3(1−t)t

2P3 + t
3P4

These are vector equations. In other words, we can put x and y instead of P to
get corresponding coordinates.

For instance, the 3-point curve is formed by points (x,y) calculated as:

x = (1−t)2x1 + 2(1−t)tx2 + t
2x3

y = (1−t)2y1 + 2(1−t)ty2 + t
2y3

Instead of x1, y1, x2, y2, x3, y3 we should put coordinates of 3 control

points, and then as t moves from 0 to 1 , for each value of t we’ll have (x,y)
of the curve.

For instance, if control points are (0,0) , (0.5, 1) and (1, 0) , the equations
become:

x = (1−t)2 * 0 + 2(1−t)t * 0.5 + t2 * 1 = (1-t)t + t2 = t

y = (1−t)2 * 0 + 2(1−t)t * 1 + t2 * 0 = 2(1-t)t = –t2 + 2t

Now as t runs from 0 to 1 , the set of values (x,y) for each t forms the curve
for such control points.

Bezier curves are defined by their control points.

We saw two definitions of Bezier curves:

1. Using a drawing process: De Casteljau’s algorithm.

2. Using a mathematical formulas.

Good properties of Bezier curves:

We can draw smooth lines with a mouse by moving control points.

Complex shapes can be made of several Bezier curves.

Summary

●

●

●

Usage:

In computer graphics, modeling, vector graphic editors. Fonts are described by
Bezier curves.

In web development – for graphics on Canvas and in the SVG format. By the way,
“live” examples above are written in SVG. They are actually a single SVG
document that is given different points as parameters. You can open it in a
separate window and see the source: demo.svg.

In CSS animation to describe the path and speed of animation.

CSS animations allow to do simple animations without JavaScript at all.

JavaScript can be used to control CSS animation and make it even better with a little
of code.

The idea of CSS transitions is simple. We describe a property and how its changes
should be animated. When the property changes, the browser paints the animation.

That is: all we need is to change the property. And the fluent transition is made by
the browser.

For instance, the CSS below animates changes of background-color for 3
seconds:

Now if an element has .animated class, any change of background-color is
animated during 3 seconds.

Click the button below to animate the background:

CSS-animations

CSS transitions

.animated {

 transition-property: background-color;

 transition-duration: 3s;

}

<button id="color">Click me</button>

<style>

 #color {

 transition-property: background-color;

 transition-duration: 3s;

 }

</style>

https://javascript.info/article/bezier-curve/demo.svg?p=0,0,1,0.5,0,0.5,1,1&animate=1

●

●

●

●

There are 4 properties to describe CSS transitions:

transition-property

transition-duration

transition-timing-function

transition-delay

We’ll cover them in a moment, for now let’s note that the common transition
property allows to declare them together in the order: property duration
timing-function delay , and also animate multiple properties at once.

For instance, this button animates both color and font-size :

Now let’s cover animation properties one by one.

<script>

 color.onclick = function() {

 this.style.backgroundColor = 'red';

 };

</script>

Click me

<button id="growing">Click me</button>

<style>

#growing {

 transition: font-size 3s, color 2s;

}

</style>

<script>

growing.onclick = function() {

 this.style.fontSize = '36px';

 this.style.color = 'red';

};

</script>

Click me

transition-property

In transition-property we write a list of property to animate, for instance:
left , margin-left , height , color .

Not all properties can be animated, but many of them  . The value all means
“animate all properties”.

In transition-duration we can specify how long the animation should take.
The time should be in CSS time format  : in seconds s or milliseconds ms .

In transition-delay we can specify the delay before the animation. For
instance, if transition-delay: 1s , then animation starts after 1 second after
the change.

Negative values are also possible. Then the animation starts from the middle. For
instance, if transition-duration is 2s , and the delay is -1s , then the
animation takes 1 second and starts from the half.

Here’s the animation shifts numbers from 0 to 9 using CSS translate property:

https://plnkr.co/edit/tRHA6fkSPUe9cjk35zPL?p=preview 

The transform property is animated like this:

In the example above JavaScript adds the class .animate to the element – and
the animation starts:

We can also start it “from the middle”, from the exact number, e.g. corresponding to
the current second, using the negative transition-delay .

Here if you click the digit – it starts the animation from the current second:

https://plnkr.co/edit/zpqja4CejOmTApUXPxwE?p=preview 

JavaScript does it by an extra line:

transition-duration

transition-delay

#stripe.animate {

 transform: translate(-90%);

 transition-property: transform;

 transition-duration: 9s;

}

stripe.classList.add('animate');

http://www.w3.org/TR/css3-transitions/#animatable-properties-
http://www.w3.org/TR/css3-values/#time
https://plnkr.co/edit/tRHA6fkSPUe9cjk35zPL?p=preview
https://plnkr.co/edit/zpqja4CejOmTApUXPxwE?p=preview

●

●

Timing function describes how the animation process is distributed along the time.
Will it start slowly and then go fast or vise versa.

That’s the most complicated property from the first sight. But it becomes very simple
if we devote a bit time to it.

That property accepts two kinds of values: a Bezier curve or steps. Let’s start from
the curve, as it’s used more often.

Bezier curve
The timing function can be set as a Bezier curve with 4 control points that satisfies
the conditions:

1. First control point: (0,0) .

2. Last control point: (1,1) .

3. For intermediate points values of x must be in the interval 0..1 , y can be
anything.

The syntax for a Bezier curve in CSS: cubic-bezier(x2, y2, x3, y3) . Here
we need to specify only 2nd and 3rd control points, because the 1st one is fixed to
(0,0) and the 4th one is (1,1) .

The timing function describes how fast the animation process goes in time.

The x axis is the time: 0 – the starting moment, 1 – the last moment of
transition-duration .

The y axis specifies the completion of the process: 0 – the starting value of the
property, 1 – the final value.

The simplest variant is when the animation goes uniformly, with the same linear
speed. That can be specified by the curve cubic-bezier(0, 0, 1, 1) .

Here’s how that curve looks:

stripe.onclick = function() {

 let sec = new Date().getSeconds() % 10;

 // for instance, -3s here starts the animation from the 3rd second

 stripe.style.transitionDelay = '-' + sec + 's';

 stripe.classList.add('animate');

};

transition-timing-function

1

2

…As we can see, it’s just a straight line. As the time (x) passes, the completion (y)
of the animation steadily goes from 0 to 1 .

The train in the example below goes from left to right with the permanent speed
(click it):

https://plnkr.co/edit/BKXxsW1mgxIZvhcpUcj4?p=preview 

The CSS transition is based on that curve:

…And how can we show a train slowing down?

We can use another Bezier curve: cubic-bezier(0.0, 0.5, 0.5 ,1.0) .

The graph:

1

2

43

As we can see, the process starts fast: the curve soars up high, and then slower and
slower.

Here’s the timing function in action (click the train):

https://plnkr.co/edit/EBBtkTnI1l5096SHLcq8?p=preview 

CSS:

.train {

 left: 0;

 transition: left 5s cubic-bezier(0, 0, 1, 1);

 /* JavaScript sets left to 450px */

}

https://plnkr.co/edit/BKXxsW1mgxIZvhcpUcj4?p=preview
https://plnkr.co/edit/EBBtkTnI1l5096SHLcq8?p=preview

There are several built-in curves: linear , ease , ease-in , ease-out and
ease-in-out .

The linear is a shorthand for cubic-bezier(0, 0, 1, 1) – a straight line,
we saw it already.

Other names are shorthands for the following cubic-bezier :

ease * ease-in ease-out ease-in-out

(0.25, 0.1, 0.25,

1.0)

(0.42, 0, 1.0,

1.0)
(0, 0, 0.58, 1.0)

(0.42, 0, 0.58,

1.0)

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

* – by default, if there’s no timing function, ease is used.

So we could use ease-out for our slowing down train:

But it looks a bit differently.

A Bezier curve can make the animation “jump out” of its range.

The control points on the curve can have any y coordinates: even negative or huge.
Then the Bezier curve would also jump very low or high, making the animation go
beyond its normal range.

.train {

 left: 0;

 transition: left 5s cubic-bezier(0, .5, .5, 1);

 /* JavaScript sets left to 450px */

}

.train {

 left: 0;

 transition: left 5s ease-out;

 /* transition: left 5s cubic-bezier(0, .5, .5, 1); */

}

●

●

●

In the example below the animation code is:

The property left should animate from 100px to 400px .

But if you click the train, you’ll see that:

First, the train goes back: left becomes less than 100px .

Then it goes forward, a little bit farther than 400px .

And then back again – to 400px .

https://plnkr.co/edit/TjXgcacdDDsFyYHb4Lnl?p=preview 

Why it happens – pretty obvious if we look at the graph of the given Bezier curve:

(1,1)

(0,0)

(0,1)

(1,0)

1

2

4

3

We moved the y coordinate of the 2nd point below zero, and for the 3rd point we
made put it over 1 , so the curve goes out of the “regular” quadrant. The y is out of
the “standard” range 0..1 .

As we know, y measures “the completion of the animation process”. The value y =
0 corresponds to the starting property value and y = 1 – the ending value. So
values y<0 move the property lower than the starting left and y>1 – over the
final left .

That’s a “soft” variant for sure. If we put y values like -99 and 99 then the train
would jump out of the range much more.

.train {

 left: 100px;

 transition: left 5s cubic-bezier(.5, -1, .5, 2);

 /* JavaScript sets left to 400px */

}

https://plnkr.co/edit/TjXgcacdDDsFyYHb4Lnl?p=preview

●

●

●

●

●

But how to make the Bezier curve for a specific task? There are many tools. For
instance, we can do it on the site http://cubic-bezier.com/  .

Steps
Timing function steps(number of steps[, start/end]) allows to split
animation into steps.

Let’s see that in an example with digits.

Here’s a list of digits, without any animations, just as a source:

https://plnkr.co/edit/iyY2pj0vD8CcbFCuqnsI?p=preview 

We’ll make the digits appear in a discrete way by making the part of the list outside
of the red “window” invisible and shifting the list to the left with each step.

There will be 9 steps, a step-move for each digit:

In action:

https://plnkr.co/edit/6VBxPjYIojjUL5vX8UvS?p=preview 

The first argument of steps(9, start) is the number of steps. The transform
will be split into 9 parts (10% each). The time interval is automatically divided into 9
parts as well, so transition: 9s gives us 9 seconds for the whole animation – 1
second per digit.

The second argument is one of two words: start or end .

The start means that in the beginning of animation we need to do make the first
step immediately.

We can observe that during the animation: when we click on the digit it changes to
1 (the first step) immediately, and then changes in the beginning of the next second.

The process is progressing like this:

0s – -10% (first change in the beginning of the 1st second, immediately)

1s – -20%

…

8s – -80%

(the last second shows the final value).

#stripe.animate {

 transform: translate(-90%);

 transition: transform 9s steps(9, start);

}

http://cubic-bezier.com/
https://plnkr.co/edit/iyY2pj0vD8CcbFCuqnsI?p=preview
https://plnkr.co/edit/6VBxPjYIojjUL5vX8UvS?p=preview

●

●

●

●

●

●

●

The alternative value end would mean that the change should be applied not in the
beginning, but at the end of each second.

So the process would go like this:

0s – 0

1s – -10% (first change at the end of the 1st second)

2s – -20%

…

9s – -90%

Here’s step(9, end) in action (note the pause between the first digit change):

https://plnkr.co/edit/I3SoddMNBYDKxH2HeFak?p=preview 

There are also shorthand values:

step-start – is the same as steps(1, start) . That is, the animation
starts immediately and takes 1 step. So it starts and finishes immediately, as if
there were no animation.

step-end – the same as steps(1, end) : make the animation in a single
step at the end of transition-duration .

These values are rarely used, because that’s not really animation, but rather a
single-step change.

When the CSS animation finishes the transitionend event triggers.

It is widely used to do an action after the animation is done. Also we can join
animations.

For instance, the ship in the example below starts to swim there and back on click,
each time farther and farther to the right:

Event transitionend

https://plnkr.co/edit/I3SoddMNBYDKxH2HeFak?p=preview

The animation is initiated by the function go that re-runs each time when the
transition finishes and flips the direction:

The event object for transitionend has few specific properties:

event.propertyName

The property that has finished animating. Can be good if we animate multiple
properties simultaneously.

boat.onclick = function() {

 //...

 let times = 1;

 function go() {

 if (times % 2) {

 // swim to the right

 boat.classList.remove('back');

 boat.style.marginLeft = 100 * times + 200 + 'px';

 } else {

 // swim to the left

 boat.classList.add('back');

 boat.style.marginLeft = 100 * times - 200 + 'px';

 }

 }

 go();

 boat.addEventListener('transitionend', function() {

 times++;

 go();

 });

};

event.elapsedTime

The time (in seconds) that the animation took, without transition-delay .

We can join multiple simple animations together using the @keyframes CSS rule.

It specifies the “name” of the animation and rules: what, when and where to animate.
Then using the animation property we attach the animation to the element and
specify additional parameters for it.

Here’s an example with explanations:

There are many articles about @keyframes and a detailed specification  .

Probably you won’t need @keyframes often, unless everything is in the constant
move on your sites.

Keyframes

<div class="progress"></div>

<style>

 @keyframes go-left-right { /* give it a name: "go-left-right" */

 from { left: 0px; } /* animate from left: 0px */

 to { left: calc(100% - 50px); } /* animate to left: 100%-50px */

 }

 .progress {

 animation: go-left-right 3s infinite alternate;

 /* apply the animation "go-left-right" to the element

 duration 3 seconds

 number of times: infinite

 alternate direction every time

 */

 position: relative;

 border: 2px solid green;

 width: 50px;

 height: 20px;

 background: lime;

 }

</style>

Summary

https://drafts.csswg.org/css-animations/

CSS animations allow to smoothly (or not) animate changes of one or multiple CSS
properties.

They are good for most animation tasks. We’re also able to use JavaScript for
animations, the next chapter is devoted to that.

Limitations of CSS animations compared to JavaScript animations:

The majority of animations can be implemented using CSS as described in this
chapter. And transitionend event allows to run JavaScript after the animation,
so it integrates fine with the code.

But in the next chapter we’ll do some JavaScript animations to cover more complex
cases.

Animate a plane (CSS)
importance: 5

Show the animation like on the picture below (click the plane):

●

●

Merits
Simple things done simply.

Fast and lightweight for CPU.

●

●

Demerits
JavaScript animations are
flexible. They can implement
any animation logic, like an
“explosion” of an element.

Not just property changes. We
can create new elements in
JavaScript for purposes of
animation.

✔ Tasks

●

●

●

●

The picture grows on click from 40x24px to 400x240px (10 times larger).

The animation takes 3 seconds.

At the end output: “Done!”.

During the animation process, there may be more clicks on the plane. They
shouldn’t “break” anything.

Open a sandbox for the task. 

To solution

Animate the flying plane (CSS)
importance: 5

Modify the solution of the previous task Animate a plane (CSS) to make the plane
grow more than it’s original size 400x240px (jump out), and then return to that size.

Here’s how it should look (click on the plane):

https://plnkr.co/edit/aZqAe14GprgbrByof3EN?p=preview

●

●

Take the solution of the previous task as the source.

To solution

Animated circle
importance: 5

Create a function showCircle(cx, cy, radius) that shows an animated
growing circle.

cx,cy are window-relative coordinates of the center of the circle,

radius is the radius of the circle.

Click the button below to see how it should look like:

The source document has an example of a circle with right styles, so the task is
precisely to do the animation right.

showCircle(150, 150, 100)

Open a sandbox for the task. 

To solution

JavaScript animations can handle things that CSS can’t.

For instance, moving along a complex path, with a timing function different from
Bezier curves, or an animation on a canvas.

An animation can be implemented as a sequence of frames – usually small changes
to HTML/CSS properties.

For instance, changing style.left from 0px to 100px moves the element.
And if we increase it in setInterval , changing by 2px with a tiny delay, like 50
times per second, then it looks smooth. That’s the same principle as in the cinema:
24 frames per second is enough to make it look smooth.

The pseudo-code can look like this:

More complete example of the animation:

JavaScript animations

Using setInterval

let timer = setInterval(function() {

 if (animation complete) clearInterval(timer);

 else increase style.left by 2px

}, 20); // change by 2px every 20ms, about 50 frames per second

let start = Date.now(); // remember start time

let timer = setInterval(function() {

 // how much time passed from the start?

 let timePassed = Date.now() - start;

 if (timePassed >= 2000) {

 clearInterval(timer); // finish the animation after 2 seconds

 return;

 }

 // draw the animation at the moment timePassed

 draw(timePassed);

}, 20);

https://plnkr.co/edit/Dsdrqp3Wc1wMQ2T3VD4W?p=preview

Click for the demo:

https://plnkr.co/edit/rah4Qvue9bwrmtS3ASKt?p=preview 

Let’s imagine we have several animations running simultaneously.

If we run them separately, then even though each one has setInterval(...,
20) , then the browser would have to repaint much more often than every 20ms .

That’s because they have different starting time, so “every 20ms” differs between
different animations. The intervals are not aligned. So we’ll have several
independent runs within 20ms .

In other words, this:

…Is lighter than three independent calls:

These several independent redraws should be grouped together, to make the redraw
easier for the browser and hence load less CPU load and look smoother.

There’s one more thing to keep in mind. Sometimes when CPU is overloaded, or
there are other reasons to redraw less often (like when the browser tab is hidden), so
we really shouldn’t run it every 20ms .

But how do we know about that in JavaScript? There’s a specification Animation
timing  that provides the function requestAnimationFrame . It addresses all
these issues and even more.

// as timePassed goes from 0 to 2000

// left gets values from 0px to 400px

function draw(timePassed) {

 train.style.left = timePassed / 5 + 'px';

}

Using requestAnimationFrame

setInterval(function() {

 animate1();

 animate2();

 animate3();

}, 20)

setInterval(animate1, 20); // independent animations

setInterval(animate2, 20); // in different places of the script

setInterval(animate3, 20);

https://plnkr.co/edit/rah4Qvue9bwrmtS3ASKt?p=preview
http://www.w3.org/TR/animation-timing/

The syntax:

That schedules the callback function to run in the closest time when the browser
wants to do animation.

If we do changes in elements in callback then they will be grouped together with
other requestAnimationFrame callbacks and with CSS animations. So there
will be one geometry recalculation and repaint instead of many.

The returned value requestId can be used to cancel the call:

The callback gets one argument – the time passed from the beginning of the
page load in microseconds. This time can also be obtained by calling
performance.now()  .

Usually callback runs very soon, unless the CPU is overloaded or the laptop
battery is almost discharged, or there’s another reason.

The code below shows the time between first 10 runs for
requestAnimationFrame . Usually it’s 10-20ms:

Now we can make a more universal animation function based on
requestAnimationFrame :

let requestId = requestAnimationFrame(callback)

// cancel the scheduled execution of callback

cancelAnimationFrame(requestId);

<script>

 let prev = performance.now();

 let times = 0;

 requestAnimationFrame(function measure(time) {

 document.body.insertAdjacentHTML("beforeEnd", Math.floor(time - prev) + " ");

 prev = time;

 if (times++ < 10) requestAnimationFrame(measure);

 })

</script>

Structured animation

https://developer.mozilla.org/en-US/docs/Web/API/Performance/now

Function animate accepts 3 parameters that essentially describes the animation:

duration

Total time of animation. Like, 1000 .

timing(timeFraction)

Timing function, like CSS-property transition-timing-function that gets the
fraction of time that passed (0 at start, 1 at the end) and returns the animation
completion (like y on the Bezier curve).

For instance, a linear function means that the animation goes on uniformly with the
same speed:

function animate({timing, draw, duration}) {

 let start = performance.now();

 requestAnimationFrame(function animate(time) {

 // timeFraction goes from 0 to 1

 let timeFraction = (time - start) / duration;

 if (timeFraction > 1) timeFraction = 1;

 // calculate the current animation state

 let progress = timing(timeFraction)

 draw(progress); // draw it

 if (timeFraction < 1) {

 requestAnimationFrame(animate);

 }

 });

}

function linear(timeFraction) {

 return timeFraction;

}

It’s graph:

0

1

1

That’s just like transition-timing-function: linear . There are more
interesting variants shown below.

draw(progress)

The function that takes the animation completion state and draws it. The value
progress=0 denotes the beginning animation state, and progress=1 – the end
state.

This is that function that actually draws out the animation.

It can move the element:

…Or do anything else, we can animate anything, in any way.

Let’s animate the element width from 0 to 100% using our function.

Click on the element for the demo:

https://plnkr.co/edit/5l241DCQmzPNofVr2wfk?p=preview 

The code for it:

function draw(progress) {

 train.style.left = progress + 'px';

}

animate({

 duration: 1000,

 timing(timeFraction) {

 return timeFraction;

 },

 draw(progress) {

 elem.style.width = progress * 100 + '%';

 }

});

https://plnkr.co/edit/5l241DCQmzPNofVr2wfk?p=preview

Unlike CSS animation, we can make any timing function and any drawing function
here. The timing function is not limited by Bezier curves. And draw can go beyond
properties, create new elements for like fireworks animation or something.

We saw the simplest, linear timing function above.

Let’s see more of them. We’ll try movement animations with different timing functions
to see how they work.

Power of n
If we want to speed up the animation, we can use progress in the power n .

For instance, a parabolic curve:

The graph:

0

1

1

See in action (click to activate):

…Or the cubic curve or event greater n . Increasing the power makes it speed up
faster.

Here’s the graph for progress in the power 5 :

Timing functions

function quad(timeFraction) {

 return Math.pow(timeFraction, 2)

}

0

1

1

In action:

The arc
Function:

The graph:

0

1

1

Back: bow shooting
This function does the “bow shooting”. First we “pull the bowstring”, and then “shoot”.

Unlike previous functions, it depends on an additional parameter x , the “elasticity
coefficient”. The distance of “bowstring pulling” is defined by it.

function circ(timeFraction) {

 return 1 - Math.sin(Math.acos(timeFraction));

}

The code:

The graph for x = 1.5 :

0

1

1

For animation we use it with a specific value of x . Example for x = 1.5 :

Bounce
Imagine we are dropping a ball. It falls down, then bounces back a few times and
stops.

The bounce function does the same, but in the reverse order: “bouncing” starts
immediately. It uses few special coefficients for that:

In action:

Elastic animation

function back(x, timeFraction) {

 return Math.pow(timeFraction, 2) * ((x + 1) * timeFraction - x)

}

function bounce(timeFraction) {

 for (let a = 0, b = 1, result; 1; a += b, b /= 2) {

 if (timeFraction >= (7 - 4 * a) / 11) {

 return -Math.pow((11 - 6 * a - 11 * timeFraction) / 4, 2) + Math.pow(b, 2)

 }

 }

}

One more “elastic” function that accepts an additional parameter x for the “initial
range”.

The graph for x=1.5 :

0

1

1

In action for x=1.5 :

So we have a collection of timing functions. Their direct application is called “easeIn”.

Sometimes we need to show the animation in the reverse order. That’s done with the
“easeOut” transform.

easeOut
In the “easeOut” mode the timing function is put into a wrapper
timingEaseOut :

function elastic(x, timeFraction) {

 return Math.pow(2, 10 * (timeFraction - 1)) * Math.cos(20 * Math.PI * x / 3 * time

}

Reversal: ease*

timingEaseOut(timeFraction) = 1 - timing(1 - timeFraction)

●

●

In other words, we have a “transform” function makeEaseOut that takes a “regular”
timing function and returns the wrapper around it:

For instance, we can take the bounce function described above and apply it:

Then the bounce will be not in the beginning, but at the end of the animation. Looks
even better:

https://plnkr.co/edit/opuSRjafyQ8Y41QXOolD?p=preview 

Here we can see how the transform changes the behavior of the function:

0

1

1

If there’s an animation effect in the beginning, like bouncing – it will be shown at the
end.

In the graph above the regular bounce has the red color, and the easeOut bounce is
blue.

Regular bounce – the object bounces at the bottom, then at the end sharply jumps
to the top.

After easeOut – it first jumps to the top, then bounces there.

easeInOut
We also can show the effect both in the beginning and the end of the animation. The
transform is called “easeInOut”.

// accepts a timing function, returns the transformed variant

function makeEaseOut(timing) {

 return function(timeFraction) {

 return 1 - timing(1 - timeFraction);

 }

}

let bounceEaseOut = makeEaseOut(bounce);

https://plnkr.co/edit/opuSRjafyQ8Y41QXOolD?p=preview

●

●

●

Given the timing function, we calculate the animation state like this:

The wrapper code:

In action, bounceEaseInOut :

https://plnkr.co/edit/F7NuLTRQblC8EgZr8ltV?p=preview 

The “easeInOut” transform joins two graphs into one: easeIn (regular) for the first
half of the animation and easeOut (reversed) – for the second part.

The effect is clearly seen if we compare the graphs of easeIn , easeOut and
easeInOut of the circ timing function:

0

1

1

Red is the regular variantof circ (easeIn).

Green – easeOut .

Blue – easeInOut .

if (timeFraction <= 0.5) { // first half of the animation

 return timing(2 * timeFraction) / 2;

} else { // second half of the animation

 return (2 - timing(2 * (1 - timeFraction))) / 2;

}

function makeEaseInOut(timing) {

 return function(timeFraction) {

 if (timeFraction < .5)

 return timing(2 * timeFraction) / 2;

 else

 return (2 - timing(2 * (1 - timeFraction))) / 2;

 }

}

bounceEaseInOut = makeEaseInOut(bounce);

https://plnkr.co/edit/F7NuLTRQblC8EgZr8ltV?p=preview

As we can see, the graph of the first half of the animation is the scaled down
easeIn , and the second half is the scaled down easeOut . As a result, the
animation starts and finishes with the same effect.

Instead of moving the element we can do something else. All we need is to write the
write the proper draw .

Here’s the animated “bouncing” text typing:

https://plnkr.co/edit/IX995Jbip9id4R2Vwer9?p=preview 

For animations that CSS can’t handle well, or those that need tight control,
JavaScript can help. JavaScript animations should be implemented via
requestAnimationFrame . That built-in method allows to setup a callback
function to run when the browser will be preparing a repaint. Usually that’s very
soon, but the exact time depends on the browser.

When a page is in the background, there are no repaints at all, so the callback won’t
run: the animation will be suspended and won’t consume resources. That’s great.

Here’s the helper animate function to setup most animations:

Options:

More interesting “draw”

Summary

function animate({timing, draw, duration}) {

 let start = performance.now();

 requestAnimationFrame(function animate(time) {

 // timeFraction goes from 0 to 1

 let timeFraction = (time - start) / duration;

 if (timeFraction > 1) timeFraction = 1;

 // calculate the current animation state

 let progress = timing(timeFraction);

 draw(progress); // draw it

 if (timeFraction < 1) {

 requestAnimationFrame(animate);

 }

 });

}

https://plnkr.co/edit/IX995Jbip9id4R2Vwer9?p=preview

●

●

●

duration – the total animation time in ms.

timing – the function to calculate animation progress. Gets a time fraction from
0 to 1, returns the animation progress, usually from 0 to 1.

draw – the function to draw the animation.

Surely we could improve it, add more bells and whistles, but JavaScript animations
are not applied on a daily basis. They are used to do something interesting and non-
standard. So you’d want to add the features that you need when you need them.

JavaScript animations can use any timing function. We covered a lot of examples
and transformations to make them even more versatile. Unlike CSS, we are not
limited to Bezier curves here.

The same is about draw : we can animate anything, not just CSS properties.

Animate the bouncing ball
importance: 5

Make a bouncing ball. Click to see how it should look:

Open a sandbox for the task. 

To solution

Animate the ball bouncing to the right
importance: 5

Make the ball bounce to the right. Like this:

✔ Tasks

https://plnkr.co/edit/NZea0UsJxbeIZKkPxQLw?p=preview

Write the animation code. The distance to the left is 100px .

Take the solution of the previous task Animate the bouncing ball as the source.

To solution

Web components is a set of standards to make self-contained components: custom
HTML-elements with their own properties and methods, encapsulated DOM and
styles.

This section describes a set of modern standards for “web components”.

As of now, these standards are under development. Some features are well-
supported and integrated into the modern HTML/DOM standard, while others are yet
in draft stage. You can try examples in any browser, Google Chrome is probably the
most up to date with these features. Guess, that’s because Google fellows are
behind many of the related specifications.

The whole component idea is nothing new. It’s used in many frameworks and
elsewhere.

Before we move to implementation details, take a look at this great achievement of
humanity:

Web components

From the orbital height

What’s common between…

That’s the International Space Station (ISS).

And this is how it’s made inside (approximately):

●

●

●

●

The International Space Station:

Consists of many components.

Each component, in its turn, has many smaller details inside.

The components are very complex, much more complicated than most websites.

Components are developed internationally, by teams from different countries,
speaking different languages.

…And this thing flies, keeps humans alive in space!

How such complex devices are created?

Which principles we could borrow to make our development same-level reliable and
scalable? Or, at least, close to it.

The well known rule for developing complex software is: don’t make complex
software.

If something becomes complex – split it into simpler parts and connect in the most
obvious way.

A good architect is the one who can make the complex simple.

Component architecture

●

●

●

We can split user interface into visual components: each of them has own place on
the page, can “do” a well-described task, and is separate from the others.

Let’s take a look at a website, for example Twitter.

It naturally splits into components:

1

2 4

3

5

6

7

1. Top navigation.

2. User info.

3. Follow suggestions.

4. Submit form.

5. (and also 6, 7) – messages.

Components may have subcomponents, e.g. messages may be parts of a higher-
level “message list” component. A clickable user picture itself may be a component,
and so on.

How do we decide, what is a component? That comes from intuition, experience and
common sense. Usually it’s a separate visual entity that we can describe in terms of
what it does and how it interacts with the page. In the case above, the page has
blocks, each of them plays its own role, it’s logical to make these components.

A component has:

Its own JavaScript class.

DOM structure, managed solely by its class, outside code doesn’t access it
(“encapsulation” principle).

CSS styles, applied to the component.

●

●

●

●

●

API: events, class methods etc, to interact with other components.

Once again, the whole “component” thing is nothing special.

There exist many frameworks and development methodologies to build them, each
with its own bells and whistles. Usually, special CSS classes and conventions are
used to provide “component feel” – CSS scoping and DOM encapsulation.

“Web components” provide built-in browser capabilities for that, so we don’t have to
emulate them any more.

Custom elements  – to define custom HTML elements.

Shadow DOM  – to create an internal DOM for the component, hidden from the
others.

CSS Scoping  – to declare styles that only apply inside the Shadow DOM of the
component.

Event retargeting  and other minor stuff to make custom components better fit
the development.

In the next chapter we’ll go into details of “Custom Elements” – the fundamental and
well-supported feature of web components, good on its own.

We can create custom HTML elements, described by our class, with its own
methods and properties, events and so on.

Once a custom element is defined, we can use it on par with built-in HTML elements.

That’s great, as HTML dictionary is rich, but not infinite. There are no <easy-
tabs> , <sliding-carousel> , <beautiful-upload> … Just think of any
other tag we might need.

We can define them with a special class, and then use as if they were always a part
of HTML.

There are two kinds of custom elements:

1. Autonomous custom elements – “all-new” elements, extending the abstract
HTMLElement class.

2. Customized built-in elements – extending built-in elements, like a customized
button, based on HTMLButtonElement etc.

First we’ll cover autonomous elements, and then move to customized built-in ones.

To create a custom element, we need to tell the browser several details about it: how
to show it, what to do when the element is added or removed to page, etc.

Custom elements

https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements
https://dom.spec.whatwg.org/#shadow-trees
https://drafts.csswg.org/css-scoping/
https://dom.spec.whatwg.org/#retarget

That’s done by making a class with special methods. That’s easy, as there are only
few methods, and all of them are optional.

Here’s a sketch with the full list:

After that, we need to register the element:

Now for any HTML elements with tag <my-element> , an instance of MyElement
is created, and the aforementioned methods are called. We also can
document.createElement('my-element') in JavaScript.

class MyElement extends HTMLElement {

 constructor() {

 super();

 // element created

 }

 connectedCallback() {

 // browser calls this method when the element is added to the document

 // (can be called many times if an element is repeatedly added/removed)

 }

 disconnectedCallback() {

 // browser calls this method when the element is removed from the document

 // (can be called many times if an element is repeatedly added/removed)

 }

 static get observedAttributes() {

 return [/* array of attribute names to monitor for changes */];

 }

 attributeChangedCallback(name, oldValue, newValue) {

 // called when one of attributes listed above is modified

 }

 adoptedCallback() {

 // called when the element is moved to a new document

 // (happens in document.adoptNode, very rarely used)

 }

 // there can be other element methods and properties

}

// let the browser know that <my-element> is served by our new class

customElements.define("my-element", MyElement);

 Custom element name must contain a hyphen -

Custom element name must have a hyphen - , e.g. my-element and super-
button are valid names, but myelement is not.

That’s to ensure that there are no name conflicts between built-in and custom
HTML elements.

For example, there already exists <time> element in HTML, for date/time. But it
doesn’t do any formatting by itself.

Let’s create <time-formatted> element that displays the time in a nice,
language-aware format:

Example: “time-formatted”

<script>

class TimeFormatted extends HTMLElement { // (1)

 connectedCallback() {

 let date = new Date(this.getAttribute('datetime') || Date.now());

 this.innerHTML = new Intl.DateTimeFormat("default", {

 year: this.getAttribute('year') || undefined,

 month: this.getAttribute('month') || undefined,

 day: this.getAttribute('day') || undefined,

 hour: this.getAttribute('hour') || undefined,

 minute: this.getAttribute('minute') || undefined,

 second: this.getAttribute('second') || undefined,

 timeZoneName: this.getAttribute('time-zone-name') || undefined,

 }).format(date);

 }

}

customElements.define("time-formatted", TimeFormatted); // (2)

</script>

<!-- (3) -->

<time-formatted datetime="2019-12-01"

 year="numeric" month="long" day="numeric"

 hour="numeric" minute="numeric" second="numeric"

 time-zone-name="short"

></time-formatted>

December 1, 2019, 3:00:00 AM GMT+3

●

●

1. The class has only one method connectedCallback() – the browser calls it
when <time-formatted> element is added to page (or when HTML parser
detects it), and it uses the built-in Intl.DateTimeFormat  data formatter, well-
supported across the browsers, to show a nicely formatted time.

2. We need to register our new element by customElements.define(tag,
class) .

3. And then we can use it everywhere.

 Custom elements upgrade

If the browser encounters any <time-formatted> elements before
customElements.define , that’s not an error. But the element is yet
unknown, just like any non-standard tag.

Such “undefined” elements can be styled with CSS selector :not(:defined) .

When customElement.define is called, they are “upgraded”: a new
instance of TimeFormatted is created for each, and connectedCallback
is called. They become :defined .

To get the information about custom elements, there are methods:

customElements.get(name) – returns the class for a custom element
with the given name ,

customElements.whenDefined(name) – returns a promise that
resolves (without value) when a custom element with the given name
becomes defined.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DateTimeFormat

 Rendering in connectedCallback , not in constructor

In the example above, element content is rendered (created) in
connectedCallback .

Why not in the constructor ?

The reason is simple: when constructor is called, it’s yet too early. The
element is created, but the browser did not yet process/assign attributes at this
stage: calls to getAttribute would return null . So we can’t really render
there.

Besides, if you think about it, that’s better performance-wise – to delay the work
until it’s really needed.

The connectedCallback triggers when the element is added to the
document. Not just appended to another element as a child, but actually
becomes a part of the page. So we can build detached DOM, create elements
and prepare them for later use. They will only be actually rendered when they
make it into the page.

In the current implementation of <time-formatted> , after the element is
rendered, further attribute changes don’t have any effect. That’s strange for an
HTML element. Usually, when we change an attribute, like a.href , we expect the
change to be immediately visible. So let’s fix this.

We can observe attributes by providing their list in observedAttributes()
static getter. For such attributes, attributeChangedCallback is called when
they are modified. It doesn’t trigger for an attribute for performance reasons.

Here’s a new <time-formatted> , that auto-updates when attributes change:

Observing attributes

<script>

class TimeFormatted extends HTMLElement {

 render() { // (1)

 let date = new Date(this.getAttribute('datetime') || Date.now());

 this.innerHTML = new Intl.DateTimeFormat("default", {

 year: this.getAttribute('year') || undefined,

 month: this.getAttribute('month') || undefined,

 day: this.getAttribute('day') || undefined,

 hour: this.getAttribute('hour') || undefined,

 minute: this.getAttribute('minute') || undefined,

 second: this.getAttribute('second') || undefined,

 timeZoneName: this.getAttribute('time-zone-name') || undefined,

1. The rendering logic is moved to render() helper method.

2. We call it once when the element is inserted into page.

3. For a change of an attribute, listed in observedAttributes() ,
attributeChangedCallback triggers.

4. …and re-renders the element.

5. At the end, we can easily make a live timer.

When HTML parser builds the DOM, elements are processed one after another,
parents before children. E.g. if we have <outer><inner></inner></outer> ,
then <outer> element is created and connected to DOM first, and then <inner> .

That leads to important consequences for custom elements.

For example, if a custom element tries to access innerHTML in
connectedCallback , it gets nothing:

 }).format(date);

 }

 connectedCallback() { // (2)

 if (!this.rendered) {

 this.render();

 this.rendered = true;

 }

 }

 static get observedAttributes() { // (3)

 return ['datetime', 'year', 'month', 'day', 'hour', 'minute', 'second', 'time-zo

 }

 attributeChangedCallback(name, oldValue, newValue) { // (4)

 this.render();

 }

}

customElements.define("time-formatted", TimeFormatted);

</script>

<time-formatted id="elem" hour="numeric" minute="numeric" second="numeric"></time-fo

<script>

setInterval(() => elem.setAttribute('datetime', new Date()), 1000); // (5)

</script>

11:01:01 AM

Rendering order

If you run it, the alert is empty.

That’s exactly because there are no children on that stage, the DOM is unfinished.
HTML parser connected the custom element <user-info> , and is going to
proceed to its children, but just didn’t yet.

If we’d like to pass information to custom element, we can use attributes. They are
available immediately.

Or, if we really need the children, we can defer access to them with zero-delay
setTimeout .

This works:

Now the alert in line (*) shows “John”, as we run it asynchronously, after the
HTML parsing is complete. We can process children if needed and finish the
initialization.

On the other hand, this solution is also not perfect. If nested custom elements also
use setTimeout to initialize themselves, then they queue up: the outer
setTimeout triggers first, and then the inner one.

So the outer element finishes the initialization before the inner one.

Let’s demonstrate that on example:

<script>

customElements.define('user-info', class extends HTMLElement {

 connectedCallback() {

 alert(this.innerHTML); // empty (*)

 }

});

</script>

<user-info>John</user-info>

<script>

customElements.define('user-info', class extends HTMLElement {

 connectedCallback() {

 setTimeout(() => alert(this.innerHTML)); // John (*)

 }

});

</script>

<user-info>John</user-info>

Output order:

1. outer connected.

2. inner connected.

3. outer initialized.

4. inner initialized.

We can clearly see that the outer element finishes initialization (3) before the inner
one (4) .

There’s no built-in callback that triggers after nested elements are ready. If needed,
we can implement such thing on our own. For instance, inner elements can dispatch
events like initialized , and outer ones can listen and react on them.

New elements that we create, such as <time-formatted> , don’t have any
associated semantics. They are unknown to search engines, and accessibility
devices can’t handle them.

But such things can be important. E.g, a search engine would be interested to know
that we actually show a time. And if we’re making a special kind of button, why not
reuse the existing <button> functionality?

We can extend and customize built-in HTML elements by inheriting from their
classes.

For example, buttons are instances of HTMLButtonElement , let’s build upon it.

1. Extend HTMLButtonElement with our class:

<script>

customElements.define('user-info', class extends HTMLElement {

 connectedCallback() {

 alert(`${this.id} connected.`);

 setTimeout(() => alert(`${this.id} initialized.`));

 }

});

</script>

<user-info id="outer">

 <user-info id="inner"></user-info>

</user-info>

Customized built-in elements

class HelloButton extends HTMLButtonElement { /* custom element methods */ }

●

●

2. Provide an third argument to customElements.define , that specifies the tag:

There may be different tags that share the same DOM-class, that’s why specifying
extends is needed.

3. At the end, to use our custom element, insert a regular <button> tag, but add
is="hello-button" to it:

Here’s a full example:

Our new button extends the built-in one. So it keeps the same styles and standard
features like disabled attribute.

HTML Living Standard: https://html.spec.whatwg.org/#custom-elements  .

Compatiblity: https://caniuse.com/#feat=custom-elements  .

Custom elements can be of two types:

 customElements.define('hello-button', HelloButton, {extends: 'button'});

<button is="hello-button">...</button>

<script>

// The button that says "hello" on click

class HelloButton extends HTMLButtonElement {

 constructor() {

 super();

 this.addEventListener('click', () => alert("Hello!"));

 }

}

customElements.define('hello-button', HelloButton, {extends: 'button'});

</script>

<button is="hello-button">Click me</button>

<button is="hello-button" disabled>Disabled</button>

Click me Disabled

References

Summary

https://html.spec.whatwg.org/#custom-elements
https://caniuse.com/#feat=custom-elements

1. “Autonomous” – new tags, extending HTMLElement .

Definition scheme:

2. “Customized built-in elements” – extensions of existing elements.

Requires one more .define argument, and is="..." in HTML:

Custom elements are well-supported among browsers. Edge is a bit behind, but
there’s a polyfill https://github.com/webcomponents/webcomponentsjs  .

Live timer element

We already have <time-formatted> element to show a nicely formatted time.

Create <live-timer> element to show the current time:

1. It should use <time-formatted> internally, not duplicate its functionality.

2. Ticks (updates) every second.

3. For every tick, a custom event named tick should be generated, with the
current date in event.detail (see chapter Dispatching custom events).

Usage:

class MyElement extends HTMLElement {

 constructor() { super(); /* ... */ }

 connectedCallback() { /* ... */ }

 disconnectedCallback() { /* ... */ }

 static get observedAttributes() { return [/* ... */]; }

 attributeChangedCallback(name, oldValue, newValue) { /* ... */ }

 adoptedCallback() { /* ... */ }

 }

customElements.define('my-element', MyElement);

/* <my-element> */

class MyButton extends HTMLButtonElement { /*...*/ }

customElements.define('my-button', MyElement, {extends: 'button'});

/* <button is="my-button"> */

✔ Tasks

<live-timer id="elem"></live-timer>

<script>

https://github.com/webcomponents/webcomponentsjs
https://javascript.info/dispatch-events

Demo:

Open a sandbox for the task. 

To solution

Shadow DOM serves for encapsulation. It allows a component to have its very own
“shadow” DOM tree, that can’t be accidentally accessed from the main document,
may have local style rules, and more.

Did you ever think how complex browser controls are created and styled?

Such as <input type="range"> :

The browser uses DOM/CSS internally to draw them. That DOM structure is
normally hidden from us, but we can see it in developer tools. E.g. in Chrome, we
need to enable in Dev Tools “Show user agent shadow DOM” option.

Then <input type="range"> looks like this:

What you see under #shadow-root is called “shadow DOM”.

We can’t get built-in shadow DOM elements by regular JavaScript calls or selectors.
These are not regular children, but a powerful encapsulation technique.

In the example above, we can see a useful attribute pseudo . It’s non-standard,
exists for historical reasons. We can use it style subelements with CSS, like this:

 elem.addEventListener('tick', event => console.log(event.detail));

</script>

11:01:02 AM

Shadow DOM

Built-in shadow DOM

https://plnkr.co/edit/ZjF2ROv8nIE3z3Cvnd5Q?p=preview

Once again, pseudo is a non-standard attribute. Chronologically, browsers first
started to experiment with internal DOM structures to implement controls, and then,
after time, shadow DOM was standardized to allow us, developers, to do the similar
thing.

Further on, we’ll use the modern shadow DOM standard, covered by DOM spec 
other related specifications.

A DOM element can have two types of DOM subtrees:

1. Light tree – a regular DOM subtree, made of HTML children. All subtrees that
we’ve seen in previous chapters were “light”.

2. Shadow tree – a hidden DOM subtree, not reflected in HTML, hidden from prying
eyes.

If an element has both, then the browser renders only the shadow tree. But we can
setup a kind of composition between shadow and light trees as well. We’ll see the
details later in the chapter Shadow DOM slots, composition.

Shadow tree can be used in Custom Elements to hide component internals and
apply component-local styles.

For example, this <show-hello> element hides its internal DOM in shadow tree:

<style>

/* make the slider track red */

input::-webkit-slider-runnable-track {

 background: red;

}

</style>

<input type="range">

Shadow tree

<script>

customElements.define('show-hello', class extends HTMLElement {

 connectedCallback() {

 const shadow = this.attachShadow({mode: 'open'});

 shadow.innerHTML = `<p>

 Hello, ${this.getAttribute('name')}

 </p>`;

 }

});

</script>

https://dom.spec.whatwg.org/#shadow-trees

●

●

That’s how the resulting DOM looks in Chrome dev tools, all the content is under
“#shadow-root”:

First, the call to elem.attachShadow({mode: …}) creates a shadow tree.

There are two limitations:

1. We can create only one shadow root per element.

2. The elem must be either a custom element, or one of: “article”, “aside”,
“blockquote”, “body”, “div”, “footer”, “h1…h6”, “header”, “main” “nav”, “p”, “section”,
or “span”. Other elements, like , can’t host shadow tree.

The mode option sets the encapsulation level. It must have any of two values:

"open" – the shadow root is available as elem.shadowRoot .

Any code is able to access the shadow tree of elem .

"closed" – elem.shadowRoot is always null .

We can only access the shadow DOM by the reference returned by
attachShadow (and probably hidden inside a class). Browser-native shadow
trees, such as <input type="range"> , are closed. There’s no way to access
them.

The shadow root  , returned by attachShadow , is like an element: we can use
innerHTML or DOM methods, such as append , to populate it.

The element with a shadow root is called a “shadow tree host”, and is available as
the shadow root host property:

Shadow DOM is strongly delimited from the main document:

<show-hello name="John"></show-hello>

Hello, John

// assuming {mode: "open"}, otherwise elem.shadowRoot is null

alert(elem.shadowRoot.host === elem); // true

Encapsulation

https://dom.spec.whatwg.org/#shadowroot

●

●

●

1. Shadow DOM elements are not visible to querySelector from the light DOM.
In particular, Shadow DOM elements may have ids that conflict with those in the
light DOM. They must be unique only within the shadow tree.

2. Shadow DOM has own stylesheets. Style rules from the outer DOM don’t get
applied.

For example:

1. The style from the document does not affect the shadow tree.

2. …But the style from the inside works.

3. To get elements in shadow tree, we must query from inside the tree.

DOM: https://dom.spec.whatwg.org/#shadow-trees 

Compatibility: https://caniuse.com/#feat=shadowdomv1 

Shadow DOM is mentioned in many other specifications, e.g. DOM Parsing 
specifies that shadow root has innerHTML .

Shadow DOM is a way to create a component-local DOM.

1. shadowRoot = elem.attachShadow({mode: open|closed}) – creates
shadow DOM for elem . If mode="open" , then it’s accessible as

<style>

 /* document style won't apply to the shadow tree inside #elem (1) */

 p { color: red; }

</style>

<div id="elem"></div>

<script>

 elem.attachShadow({mode: 'open'});

 // shadow tree has its own style (2)

 elem.shadowRoot.innerHTML = `

 <style> p { font-weight: bold; } </style>

 <p>Hello, John!</p>

 `;

 // <p> is only visible from queries inside the shadow tree (3)

 alert(document.querySelectorAll('p').length); // 0

 alert(elem.shadowRoot.querySelectorAll('p').length); // 1

</script>

References

Summary

https://dom.spec.whatwg.org/#shadow-trees
https://caniuse.com/#feat=shadowdomv1
https://w3c.github.io/DOM-Parsing/#the-innerhtml-mixin

●

●

●

elem.shadowRoot property.

2. We can populate shadowRoot using innerHTML or other DOM methods.

Shadow DOM elements:

Have their own ids space,

Invisible to JavaScript selectors from the main document, such as
querySelector ,

Use styles only from the shadow tree, not from the main document.

Shadow DOM, if exists, is rendered by the browser instead of so-called “light DOM”
(regular children). In the chapter Shadow DOM slots, composition we’ll see how to
compose them.

A built-in <template> element serves as a storage for HTML markup templates.
The browser ignores it contents, only checks for syntax validity, but we can access
and use it in JavaScript, to create other elements.

In theory, we could create any invisible element somewhere in HTML for HTML
markup storage purposes. What’s special about <template> ?

First, its content can be any valid HTML, even if it normally requires a proper
enclosing tag.

For example, we can put there a table row <tr> :

Usually, if we try to put <tr> inside, say, a <div> , the browser detects the invalid
DOM structure and “fixes” it, adds <table> around. That’s not what we want. On
the other hand, <template> keeps exactly what we place there.

We can put styles and scripts into <template> as well:

Template element

<template>

 <tr>

 <td>Contents</td>

 </tr>

</template>

<template>

 <style>

 p { font-weight: bold; }

 </style>

 <script>

The browser considers <template> content “out of the document”: styles are not
applied, scripts are not executed, <video autoplay> is not run, etc.

The content becomes live (styles apply, scripts run etc) when we insert it into the
document.

The template content is available in its content property as a DocumentFragment
– a special type of DOM node.

We can treat it as any other DOM node, except one special property: when we insert
it somewhere, its children are inserted instead.

For example:

Let’s rewrite a Shadow DOM example from the previous chapter using
<template> :

 alert("Hello");

 </script>

</template>

Inserting template

<template id="tmpl">

 <script>

 alert("Hello");

 </script>

 <div class="message">Hello, world!</div>

</template>

<script>

 let elem = document.createElement('div');

 // Clone the template content to reuse it multiple times

 elem.append(tmpl.content.cloneNode(true));

 document.body.append(elem);

 // Now the script from <template> runs

</script>

<template id="tmpl">

 <style> p { font-weight: bold; } </style>

 <p id="message"></p>

</template>

<div id="elem">Click me</div>

https://javascript.info/modifying-document#document-fragment

●

●

●

●

●

●

In the line (*) when we clone and insert tmpl.content , as its
DocumentFragment , its children (<style> , <p>) are inserted instead.

They form the shadow DOM:

To summarize:

<template> content can be any syntactically correct HTML.

<template> content is considered “out of the document”, so it doesn’t affect
anything.

We can access template.content from JavaScript, clone it to reuse in a new
component.

The <template> tag is quite unique, because:

The browser checks HTML syntax inside it (as opposed to using a template string
inside a script).

…But still allows use of any top-level HTML tags, even those that don’t make
sense without proper wrappers (e.g. <tr>).

The content becomes interactive: scripts run, <video autoplay> plays etc,
when inserted into the document.

The <template> element does not feature any iteration mechanisms, data binding
or variable substitutions, but we can implement those on top of it.

<script>

 elem.onclick = function() {

 elem.attachShadow({mode: 'open'});

 elem.shadowRoot.append(tmpl.content.cloneNode(true)); // (*)

 elem.shadowRoot.getElementById('message').innerHTML = "Hello from the shadows!"

 };

</script>

Click me

<div id="elem">

 #shadow-root

 <style> p { font-weight: bold; } </style>

 <p id="message"></p>

</div>

Summary

Many types of components, such as tabs, menus, image galleries, and so on, need
the content to render.

Just like built-in browser <select> expects <option> items, our <custom-
tabs> may expect the actual tab content to be passed. And a <custom-menu>
may expect menu items.

The code that makes use of <custom-menu> can look like this:

…Then our component should render it properly, as a nice menu with given title and
items, handle menu events, etc.

How to implement it?

We could try to analyze the element content and dynamically copy-rearrange DOM
nodes. That’s possible, but if we’re moving elements to shadow DOM, then CSS
styles from the document do not apply in there, so the visual styling may be lost.
Also that requires some coding.

Luckily, we don’t have to. Shadow DOM supports <slot> elements, that are
automatically filled by the content from light DOM.

Let’s see how slots work on a simple example.

Here, <user-card> shadow DOM provides two slots, filled from light DOM:

Shadow DOM slots, composition

<custom-menu>

 <title>Candy menu</title>

 <item>Lollipop</item>

 <item>Fruit Toast</item>

 <item>Cup Cake</item>

</custom-menu>

Named slots

<script>

customElements.define('user-card', class extends HTMLElement {

 connectedCallback() {

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML = `

 <div>Name:

 <slot name="username"></slot>

 </div>

 <div>Birthday:

 <slot name="birthday"></slot>

 </div>

In the shadow DOM, <slot name="X"> defines an “insertion point”, a place
where elements with slot="X" are rendered.

Then the browser performs “composition”: it takes elements from the light DOM and
renders them in corresponding slots of the shadow DOM. At the end, we have
exactly what we want – a component that can be filled with data.

Here’s the DOM structure after the script, not taking composition into account:

We created the shadow DOM, so here it is, under #shadow-root . Now the
element has both light and shadow DOM.

For rendering purposes, for each <slot name="..."> in shadow DOM, the
browser looks for slot="..." with the same name in the light DOM. These
elements are rendered inside the slots:

 `;

 }

});

</script>

<user-card>

 John Smith

 01.01.2001

</user-card>

Name: John Smith
Birthday: 01.01.2001

<user-card>

 #shadow-root

 <div>Name:

 <slot name="username"></slot>

 </div>

 <div>Birthday:

 <slot name="birthday"></slot>

 </div>

 John Smith

 01.01.2001

</user-card>

The result is called “flattened” DOM:

…But the flattened DOM exists only for rendering and event-handling purposes. It’s
kind of “virtual”. That’s how things are shown. But the nodes in the document are
actually not moved around!

That can be easily checked if we run querySelector : nodes are still at their
places.

So, the flattened DOM is derived from shadow DOM by inserting slots. The browser
renders it and uses for style inheritance, event propagation (more about that later).
But JavaScript still sees the document “as is”, before flattening.

<user-card>

 #shadow-root

 <div>Name:

 <slot name="username">

 <!-- slotted element is inserted into the slot -->

 John Smith

 </slot>

 </div>

 <div>Birthday:

 <slot name="birthday">

 01.01.2001

 </slot>

 </div>

</user-card>

// light DOM nodes are still at the same place, under `<user-card>`

alert(document.querySelector('user-card span').length); // 2

⚠ Only top-level children may have slot="…" attribute

The slot="..." attribute is only valid for direct children of the shadow host (in
our example, <user-card> element). For nested elements it’s ignored.

For example, the second here is ignored (as it’s not a top-level child of
<user-card>):

If there are multiple elements in light DOM with the same slot name, they are
appended into the slot, one after another.

For example, this:

Gives this flattened DOM with two elements in <slot name="username"> :

<user-card>

 John Smith

 <div>

 <!-- invalid slot, must be direct child of user-card -->

 01.01.2001

 </div>

</user-card>

<user-card>

 John

 Smith

</user-card>

<user-card>

 #shadow-root

 <div>Name:

 <slot name="username">

 John

 Smith

 </slot>

 </div>

 <div>Birthday:

 <slot name="birthday"></slot>

 </div>

</user-card>

Slot fallback content

If we put something inside a <slot> , it becomes the fallback, “default” content. The
browser shows it if there’s no corresponding filler in light DOM.

For example, in this piece of shadow DOM, Anonymous renders if there’s no
slot="username" in light DOM.

The first <slot> in shadow DOM that doesn’t have a name is a “default” slot. It
gets all nodes from the light DOM that aren’t slotted elsewhere.

For example, let’s add the default slot to our <user-card> that shows all unslotted
information about the user:

<div>Name:

 <slot name="username">Anonymous</slot>

</div>

Default slot: first unnamed

<script>

customElements.define('user-card', class extends HTMLElement {

 connectedCallback() {

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML = `

 <div>Name:

 <slot name="username"></slot>

 </div>

 <div>Birthday:

 <slot name="birthday"></slot>

 </div>

 <fieldset>

 <legend>Other information</legend>

 <slot></slot>

 </fieldset>

 `;

 }

});

</script>

<user-card>

 <div>I like to swim.</div>

 John Smith

 01.01.2001

 <div>...And play volleyball too!</div>

</user-card>

All the unslotted light DOM content gets into the “Other information” fieldset.

Elements are appended to a slot one after another, so both unslotted pieces of
information are in the default slot together.

The flattened DOM looks like this:

Now let’s back to <custom-menu> , mentioned at the beginning of the chapter.

We can use slots to distribute elements.

Here’s the markup for <custom-menu> :

Name: John Smith
Birthday: 01.01.2001

Other information
I like to swim.
...And play volleyball too!

<user-card>

 #shadow-root

 <div>Name:

 <slot name="username">

 John Smith

 </slot>

 </div>

 <div>Birthday:

 <slot name="birthday">

 01.01.2001

 </slot>

 </div>

 <fieldset>

 <legend>About me</legend>

 <slot>

 <div>Hello</div>

 <div>I am John!</div>

 </slot>

 </fieldset>

</user-card>

Menu example

<custom-menu>

 Candy menu

 <li slot="item">Lollipop

 <li slot="item">Fruit Toast

 <li slot="item">Cup Cake

</custom-menu>

The shadow DOM template with proper slots:

1. goes into <slot name="title"> .

2. There are many <li slot="item"> in the template, but only one <slot
name="item"> in the template. So all such <li slot="item"> are
appended to <slot name="item"> one after another, thus forming the list.

The flattened DOM becomes:

One might notice that, in a valid DOM, must be a direct child of . But
that’s flattened DOM, it describes how the component is rendered, such thing
happens naturally here.

We just need to add a click handler to open/close the list, and the <custom-
menu> is ready:

<template id="tmpl">

 <style> /* menu styles */ </style>

 <div class="menu">

 <slot name="title"></slot>

 <slot name="item"></slot>

 </div>

</template>

<custom-menu>

 #shadow-root

 <style> /* menu styles */ </style>

 <div class="menu">

 <slot name="title">

 Candy menu

 </slot>

 <slot name="item">

 <li slot="item">Lollipop

 <li slot="item">Fruit Toast

 <li slot="item">Cup Cake

 </slot>

 </div>

</custom-menu>

customElements.define('custom-menu', class extends HTMLElement {

 connectedCallback() {

 this.attachShadow({mode: 'open'});

Here’s the full demo:

Of course, we can add more functionality to it: events, methods and so on.

What if the outer code wants to add/remove menu items dynamically?

The browser monitors slots and updates the rendering if slotted elements are
added/removed.

Also, as light DOM nodes are not copied, but just rendered in slots, the changes
inside them immediately become visible.

So we don’t have to do anything to update rendering. But if the component code
wants to know about slot changes, then slotchange event is available.

For example, here the menu item is inserted dynamically after 1 second, and the title
changes after 2 seconds:

 // tmpl is the shadow DOM template (above)

 this.shadowRoot.append(tmpl.content.cloneNode(true));

 // we can't select light DOM nodes, so let's handle clicks on the slot

 this.shadowRoot.querySelector('slot[name="title"]').onclick = () => {

 // open/close the menu

 this.shadowRoot.querySelector('.menu').classList.toggle('closed');

 };

 }

});

�Candy menu
Lollipop
Fruit Toast
Cup Cake

Updating slots

<custom-menu id="menu">

 Candy menu

</custom-menu>

<script>

customElements.define('custom-menu', class extends HTMLElement {

 connectedCallback() {

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML = `<div class="menu">

 <slot name="title"></slot>

●

The menu rendering updates each time without our intervention.

There are two slotchange events here:

1. At initialization:

slotchange: title triggers immediately, as the slot="title" from the
light DOM gets into the corresponding slot.

2. After 1 second:

slotchange: item triggers, when a new <li slot="item"> is added.

Please note: there’s no slotchange event after 2 seconds, when the content of
slot="title" is modified. That’s because there’s no slot change. We modify the
content inside the slotted element, that’s another thing.

If we’d like to track internal modifications of light DOM from JavaScript, that’s also
possible using a more generic mechanism: MutationObserver.

Finally, let’s mention the slot-related JavaScript methods.

As we’ve seen before, JavaScript looks at the “real” DOM, without flattening. But, if
the shadow tree has {mode: 'open'} , then we can figure out which elements
assigned to a slot and, vise-versa, the slot by the element inside it:

node.assignedSlot – returns the <slot> element that the node is
assigned to.

 <slot name="item"></slot>

 </div>`;

 // shadowRoot can't have event handlers, so using the first child

 this.shadowRoot.firstElementChild.addEventListener('slotchange',

 e => alert("slotchange: " + e.target.name)

);

 }

});

setTimeout(() => {

 menu.insertAdjacentHTML('beforeEnd', '<li slot="item">Lollipop')

}, 1000);

setTimeout(() => {

 menu.querySelector('[slot="title"]').innerHTML = "New menu";

}, 2000);

</script>

Slot API

https://javascript.info/mutation-observer

●

●

slot.assignedNodes({flatten: true/false}) – DOM nodes,
assigned to the slot. The flatten option is false by default. If explicitly set to
true , then it looks more deeply into the flattened DOM, returning nested slots in
case of nested components and the fallback content if no node assigned.

slot.assignedElements({flatten: true/false}) – DOM elements,
assigned to the slot (same as above, but only element nodes).

These methods are useful when we need not just show the slotted content, but also
track it in JavaScript.

For example, if <custom-menu> component wants to know, what it shows, then it
could track slotchange and get the items from slot.assignedElements :

<custom-menu id="menu">

 Candy menu

 <li slot="item">Lollipop

 <li slot="item">Fruit Toast

</custom-menu>

<script>

customElements.define('custom-menu', class extends HTMLElement {

 items = []

 connectedCallback() {

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML = `<div class="menu">

 <slot name="title"></slot>

 <slot name="item"></slot>

 </div>`;

 // slottable is added/removed/replaced

 this.shadowRoot.firstElementChild.addEventListener('slotchange', e => {

 let slot = e.target;

 if (slot.name == 'item') {

 this.items = slot.assignedElements().map(elem => elem.textContent);

 alert("Items: " + this.items);

 }

 });

 }

});

// items update after 1 second

setTimeout(() => {

 menu.insertAdjacentHTML('beforeEnd', '<li slot="item">Cup Cake')

}, 1000);

</script>

Summary

●

●

●

●

●

●

●

●

Usually, if an element has shadow DOM, then its light DOM is not displayed. Slots
allow to show elements from light DOM in specified places of shadow DOM.

There are two kinds of slots:

Named slots: <slot name="X">...</slot> – gets light children with
slot="X" .

Default slot: the first <slot> without a name (subsequent unnamed slots are
ignored) – gets unslotted light children.

If there are many elements for the same slot – they are appended one after
another.

The content of <slot> element is used as a fallback. It’s shown if there are no
light children for the slot.

The process of rendering slotted elements inside their slots is called “composition”.
The result is called a “flattened DOM”.

Composition does not really move nodes, from JavaScript point of view the DOM is
still same.

JavaScript can access slots using methods:

slot.assignedNodes/Elements() – returns nodes/elements inside the
slot .

node.assignedSlot – the reverse meethod, returns slot by a node.

If we’d like to know what we’re showing, we can track slot contents using:

slotchange event – triggers the first time a slot is filled, and on any
add/remove/replace operation of the slotted element, but not its children. The slot
is event.target .

MutationObserver to go deeper into slot content, watch changes inside it.

Now, as we know how to show elements from light DOM in shadow DOM, let’s see
how to style them properly. The basic rule is that shadow elements are styled inside,
and light elements – outside, but there are notable exceptions.

We’ll see the details in the next chapter.

Shadow DOM may include both <style> and <link rel="stylesheet"
href="…"> tags. In the latter case, stylesheets are HTTP-cached, so they are not
redownloaded for multiple components that use same template.

As a general rule, local styles work only inside the shadow tree, and document styles
work outside of it. But there are few exceptions.

Shadow DOM styling

https://javascript.info/mutation-observer

The :host selector allows to select the shadow host (the element containing the
shadow tree).

For instance, we’re making <custom-dialog> element that should be centered.
For that we need to style the <custom-dialog> element itself.

That’s exactly what :host does:

The shadow host (<custom-dialog> itself) resides in the light DOM, so it’s
affected by document CSS rules.

If there’s a property styled both in :host locally, and in the document, then the
document style takes precedence.

:host

<template id="tmpl">

 <style>

 /* the style will be applied from inside to the custom-dialog element */

 :host {

 position: fixed;

 left: 50%;

 top: 50%;

 transform: translate(-50%, -50%);

 display: inline-block;

 border: 1px solid red;

 padding: 10px;

 }

 </style>

 <slot></slot>

</template>

<script>

customElements.define('custom-dialog', class extends HTMLElement {

 connectedCallback() {

 this.attachShadow({mode: 'open'}).append(tmpl.content.cloneNode(true));

 }

});

</script>

<custom-dialog>

 Hello!

</custom-dialog>

Hello!

Cascading

For instance, if in the document we had:

…Then the <custom-dialog> would be without padding.

It’s very convenient, as we can setup “default” component styles in its :host rule,
and then easily override them in the document.

The exception is when a local property is labelled !important , for such
properties, local styles take precedence.

Same as :host , but applied only if the shadow host matches the selector .

For example, we’d like to center the <custom-dialog> only if it has centered
attribute:

<style>

custom-dialog {

 padding: 0;

}

</style>

:host(selector)

<template id="tmpl">

 <style>

 :host([centered]) {

 position: fixed;

 left: 50%;

 top: 50%;

 transform: translate(-50%, -50%);

 border-color: blue;

 }

 :host {

 display: inline-block;

 border: 1px solid red;

 padding: 10px;

 }

 </style>

 <slot></slot>

</template>

<script>

customElements.define('custom-dialog', class extends HTMLElement {

 connectedCallback() {

 this.attachShadow({mode: 'open'}).append(tmpl.content.cloneNode(true));

 }

});

</script>

Now the additional centering styles are only applied to the first dialog: <custom-
dialog centered> .

Same as :host , but applied only if the shadow host or any of its ancestors in the
outer document matches the selector .

E.g. :host-context(.dark-theme) matches only if there’s dark-theme
class on <custom-dialog> on anywhere above it:

To summarize, we can use :host -family of selectors to style the main element of
the component, depending on the context. These styles (unless !important) can
be overridden by the document.

Now let’s consider the situation with slots.

Slotted elements come from light DOM, so they use document styles. Local styles do
not affect slotted content.

In the example below, slotted is bold, as per document style, but does not
take background from the local style:

<custom-dialog centered>

 Centered!

</custom-dialog>

<custom-dialog>

 Not centered.

</custom-dialog>

Not centered.
Centered!

:host-context(selector)

<body class="dark-theme">

 <!--

 :host-context(.dark-theme) applies to custom-dialogs inside .dark-theme

 -->

 <custom-dialog>...</custom-dialog>

</body>

Styling slotted content

The result is bold, but not red.

If we’d like to style slotted elements in our component, there are two choices.

First, we can style the <slot> itself and rely on CSS inheritance:

<style>

 span { font-weight: bold }

</style>

<user-card>

 <div slot="username">John Smith</div>

</user-card>

<script>

customElements.define('user-card', class extends HTMLElement {

 connectedCallback() {

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML = `

 <style>

 span { background: red; }

 </style>

 Name: <slot name="username"></slot>

 `;

 }

});

</script>

Name:
John Smith

<user-card>

 <div slot="username">John Smith</div>

</user-card>

<script>

customElements.define('user-card', class extends HTMLElement {

 connectedCallback() {

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML = `

 <style>

 slot[name="username"] { font-weight: bold; }

 </style>

 Name: <slot name="username"></slot>

 `;

 }

});

</script>

Here <p>John Smith</p> becomes bold, because CSS inheritance is in effect
between the <slot> and its contents. But in CSS itself not all properties are
inherited.

Another option is to use ::slotted(selector) pseudo-class. It matches
elements based on two conditions:

1. That’s a slotted element, that comes from the light DOM. Slot name doesn’t
matter. Just any slotted element, but only the element itself, not its children.

2. The element matches the selector .

In our example, ::slotted(div) selects exactly <div slot="username"> ,
but not its children:

Please note, ::slotted selector can’t descend any further into the slot. These
selectors are invalid:

Name:
John Smith

<user-card>

 <div slot="username">

 <div>John Smith</div>

 </div>

</user-card>

<script>

customElements.define('user-card', class extends HTMLElement {

 connectedCallback() {

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML = `

 <style>

 ::slotted(div) { border: 1px solid red; }

 </style>

 Name: <slot name="username"></slot>

 `;

 }

});

</script>

Name:
John Smith

::slotted(div span) {

 /* our slotted <div> does not match this */

Also, ::slotted can only be used in CSS. We can’t use it in querySelector .

How do we style internal elements of a component from the main document?

Selectors like :host apply rules to <custom-dialog> element or <user-
card> , but how to style shadow DOM elements inside them?

There’s no selector that can directly affect shadow DOM styles from the document.
But just as we expose methods to interact with our component, we can expose CSS
variables (custom CSS properties) to style it.

Custom CSS properties exist on all levels, both in light and shadow.

For example, in shadow DOM we can use --user-card-field-color CSS
variable to style fields, and the outer document can set its value:

Then, we can declare this property in the outer document for <user-card> :

Custom CSS properties pierce through shadow DOM, they are visible everywhere,
so the inner .field rule will make use of it.

Here’s the full example:

}

::slotted(div) p {

 /* can't go inside light DOM */

}

CSS hooks with custom properties

<style>

 .field {

 color: var(--user-card-field-color, black);

 /* if --user-card-field-color is not defined, use black color */

 }

</style>

<div class="field">Name: <slot name="username"></slot></div>

<div class="field">Birthday: <slot name="birthday"></slot></div>

</style>

user-card {

 --user-card-field-color: green;

}

●

●

●

●

Shadow DOM can include styles, such as <style> or <link
rel="stylesheet"> .

Local styles can affect:

shadow tree,

shadow host with :host -family pseudoclasses,

slotted elements (coming from light DOM), ::slotted(selector) allows to
select slotted elements themselves, but not their children.

Document styles can affect:

shadow host (as it lives in the outer document)

<style>

 user-card {

 --user-card-field-color: green;

 }

</style>

<template id="tmpl">

 <style>

 .field {

 color: var(--user-card-field-color, black);

 }

 </style>

 <div class="field">Name: <slot name="username"></slot></div>

 <div class="field">Birthday: <slot name="birthday"></slot></div>

</template>

<script>

customElements.define('user-card', class extends HTMLElement {

 connectedCallback() {

 this.attachShadow({mode: 'open'});

 this.shadowRoot.append(document.getElementById('tmpl').content.cloneNode(true))

 }

});

</script>

<user-card>

 John Smith

 01.01.2001

</user-card>

Name: John Smith
Birthday: 01.01.2001

Summary

● slotted elements and their contents (as that’s also in the outer document)

When CSS properties conflict, normally document styles have precedence, unless
the property is labelled as !important . Then local styles have precedence.

CSS custom properties pierce through shadow DOM. They are used as “hooks” to
style the component:

1. The component uses a custom CSS property to style key elements, such as
var(--component-name-title, <default value>) .

2. Component author publishes these properties for developers, they are same
important as other public component methods.

3. When a developer wants to style a title, they assign --component-name-
title CSS property for the shadow host or above.

4. Profit!

The idea behind shadow tree is to encapsulate internal implementation details of a
component.

Let’s say, a click event happens inside a shadow DOM of <user-card>
component. But scripts in the main document have no idea about the shadow DOM
internals, especially if the component comes from a 3rd-party library.

So, to keep the details encapsulated, the browser retargets the event.

Events that happen in shadow DOM have the host element as the target, when
caught outside of the component.

Here’s a simple example:

Shadow DOM and events

<user-card></user-card>

<script>

customElements.define('user-card', class extends HTMLElement {

 connectedCallback() {

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML = `<p>

 <button>Click me</button>

 </p>`;

 this.shadowRoot.firstElementChild.onclick =

 e => alert("Inner target: " + e.target.tagName);

 }

});

document.onclick =

 e => alert("Outer target: " + e.target.tagName);

</script>

If you click on the button, the messages are:

1. Inner target: BUTTON – internal event handler gets the correct target, the element
inside shadow DOM.

2. Outer target: USER-CARD – document event handler gets shadow host as the
target.

Event retargeting is a great thing to have, because the outer document doesn’t have
to know about component internals. From its point of view, the event happened on
<user-card> .

Retargeting does not occur if the event occurs on a slotted element, that
physically lives in the light DOM.

For example, if a user clicks on in the example
below, the event target is exactly this span element, for both shadow and light
handlers:

If a click happens on "John Smith" , for both inner and outer handlers the target
is . That’s an element from the light DOM, so no

Click me

<user-card id="userCard">

 John Smith

</user-card>

<script>

customElements.define('user-card', class extends HTMLElement {

 connectedCallback() {

 this.attachShadow({mode: 'open'});

 this.shadowRoot.innerHTML = `<div>

 Name: <slot name="username"></slot>

 </div>`;

 this.shadowRoot.firstElementChild.onclick =

 e => alert("Inner target: " + e.target.tagName);

 }

});

userCard.onclick = e => alert(`Outer target: ${e.target.tagName}`);

</script>

Name: John Smith

retargeting.

On the other hand, if the click occurs on an element originating from shadow DOM,
e.g. on Name , then, as it bubbles out of the shadow DOM, its
event.target is reset to <user-card> .

For purposes of event bubbling, flattened DOM is used.

So, if we have a slotted element, and an event occurs somewhere inside it, then it
bubbles up to the <slot> and upwards.

The full path to the original event target, with all the shadow elements, can be
obtained using event.composedPath() . As we can see from the name of the
method, that path is taken after the composition.

In the example above, the flattened DOM is:

So, for a click on , a call to
event.composedPath() returns an array: [span , slot , div , shadow-
root , user-card , body , html , document , window]. That’s exactly the
parent chain from the target element in the flattened DOM, after the composition.

⚠ Shadow tree details are only provided for {mode:'open'} trees

If the shadow tree was created with {mode: 'closed'} , then the composed
path starts from the host: user-card and upwards.

That’s the similar principle as for other methods that work with shadow DOM.
Internals of closed trees are completely hidden.

Most events successfully bubble through a shadow DOM boundary. There are few
events that do not.

Bubbling, event.composedPath()

<user-card id="userCard">

 #shadow-root

 <div>

 Name:

 <slot name="username">

 John Smith

 </slot>

 </div>

</user-card>

event.composed

●

●

●

●

●

●

●

●

●

This is governed by the composed event object property. If it’s true , then the
event does cross the boundary. Otherwise, it only can be caught from inside the
shadow DOM.

If you take a look at UI Events specification  , most events have composed:
true :

blur , focus , focusin , focusout ,

click , dblclick ,

mousedown , mouseup mousemove , mouseout , mouseover ,

wheel ,

beforeinput , input , keydown , keyup .

All touch events and pointer events also have composed: true .

There are some events that have composed: false though:

mouseenter , mouseleave (they do not bubble at all),

load , unload , abort , error ,

select ,

slotchange .

These events can be caught only on elements within the same DOM, where the
event target resides.

When we dispatch custom events, we need to set both bubbles and composed
properties to true for it to bubble up and out of the component.

For example, here we create div#inner in the shadow DOM of div#outer and
trigger two events on it. Only the one with composed: true makes it outside to
the document:

Custom events

<div id="outer"></div>

<script>

outer.attachShadow({mode: 'open'});

let inner = document.createElement('div');

outer.shadowRoot.append(inner);

/*

div(id=outer)

 #shadow-dom

 div(id=inner)

https://www.w3.org/TR/uievents

●

●

●

●

●

●

●

●

Events only cross shadow DOM boundaries if their composed flag is set to true .

Built-in events mostly have composed: true , as described in the relevant
specifications:

UI Events https://www.w3.org/TR/uievents  .

Touch Events https://w3c.github.io/touch-events  .

Pointer Events https://www.w3.org/TR/pointerevents  .

…And so on.

Some built-in events that have composed: false :

mouseenter , mouseleave (also do not bubble),

load , unload , abort , error ,

select ,

slotchange .

These events can be caught only on elements within the same DOM.

If we dispatch a CustomEvent , then we should explicitly set composed: true .

Please note that in case of nested components, one shadow DOM may be nested
into another. In that case composed events bubble through all shadow DOM
boundaries. So, if an event is intended only for the immediate enclosing component,
we can also dispatch it on the shadow host and set composed: false . Then it’s
out of the component shadow DOM, but won’t bubble up to higher-level DOM.

*/

document.addEventListener('test', event => alert(event.detail));

inner.dispatchEvent(new CustomEvent('test', {

 bubbles: true,

 composed: true,

 detail: "composed"

}));

inner.dispatchEvent(new CustomEvent('test', {

 bubbles: true,

 composed: false,

 detail: "not composed"

}));

</script>

Summary

Regular expressions

https://www.w3.org/TR/uievents
https://w3c.github.io/touch-events
https://www.w3.org/TR/pointerevents

Regular expressions is a powerful way of doing search and replace in strings.

Regular expressions are patterns that provide a powerful way to search and replace
in text.

In JavaScript, they are available via the RegExp  object, as well as being
integrated in methods of strings.

A regular expression (also “regexp”, or just “reg”) consists of a pattern and optional
flags.

There are two syntaxes that can be used to create a regular expression object.

The “long” syntax:

And the “short” one, using slashes "/" :

Slashes /.../ tell JavaScript that we are creating a regular expression. They play
the same role as quotes for strings.

In both cases regexp becomes an instance of the built-in RegExp class.

The main difference between these two syntaxes is that pattern using slashes
/.../ does not allow for expressions to be inserted (like string template literals
with ${...}). They are fully static.

Slashes are used when we know the regular expression at the code writing time –
and that’s the most common situation. While new RegExp , is more often used
when we need to create a regexp “on the fly” from a dynamically generated string.
For instance:

Patterns and flags

Regular Expressions

regexp = new RegExp("pattern", "flags");

regexp = /pattern/; // no flags

regexp = /pattern/gmi; // with flags g,m and i (to be covered soon)

let tag = prompt("What tag do you want to find?", "h2");

let regexp = new RegExp(`<${tag}>`); // same as /<h2>/ if answered "h2" in the promp

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp

●

●

●

Regular expressions may have flags that affect the search.

There are only 6 of them in JavaScript:

i

With this flag the search is case-insensitive: no difference between A and a (see
the example below).

g

With this flag the search looks for all matches, without it – only the first match is
returned.

m

Multiline mode (covered in the chapter Multiline mode of anchors ^ $, flag "m").

s

Enables “dotall” mode, that allows a dot . to match newline character \n (covered
in the chapter Character classes).

u

Enables full unicode support. The flag enables correct processing of surrogate pairs.
More about that in the chapter Unicode: flag "u" and class \p{...}.

y

“Sticky” mode: searching at the exact position in the text (covered in the chapter
Sticky flag "y", searching at position)

 Colors

From here on the color scheme is:

regexp – red

string (where we search) – blue

result – green

As mentioned previously, regular expressions are integrated with string methods.

The method str.match(regexp) finds all matches of regexp in the string
str .

Flags

Searching: str.match

It has 3 working modes:

1. If the regular expression has flag g , it returns an array of all matches:

Please note that both We and we are found, because flag i makes the regular
expression case-insensitive.

2. If there’s no such flag it returns only the first match in the form of an array, with the
full match at index 0 and some additional details in properties:

The array may have other indexes, besides 0 if a part of the regular expression is
enclosed in parentheses. We’ll cover that in the chapter Capturing groups.

3. And, finally, if there are no matches, null is returned (doesn’t matter if there’s
flag g or not).

This a very important nuance. If there are no matches, we don’t receive an empty
array, but instead receive null . Forgetting about that may lead to errors, e.g.:

If we’d like the result to always be an array, we can write it this way:

let str = "We will, we will rock you";

alert(str.match(/we/gi)); // We,we (an array of 2 substrings that match)

let str = "We will, we will rock you";

let result = str.match(/we/i); // without flag g

alert(result[0]); // We (1st match)

alert(result.length); // 1

// Details:

alert(result.index); // 0 (position of the match)

alert(result.input); // We will, we will rock you (source string)

let matches = "JavaScript".match(/HTML/); // = null

if (!matches.length) { // Error: Cannot read property 'length' of null

 alert("Error in the line above");

}

 let matches = "JavaScript".match(/HTML/) || [];

if (!matches.length) {

The method str.replace(regexp, replacement) replaces matches found
using regexp in string str with replacement (all matches if there’s flag g ,
otherwise, only the first one).

For instance:

The second argument is the replacement string. We can use special character
combinations in it to insert fragments of the match:

Symbols Action in the replacement string

$& inserts the whole match

$` inserts a part of the string before the match

$' inserts a part of the string after the match

$n
if n is a 1-2 digit number, then it inserts the contents of n-th parentheses, more about it in the

chapter Capturing groups

$<name>
inserts the contents of the parentheses with the given name , more about it in the chapter

Capturing groups

$$ inserts character $

An example with $& :

The method regexp.test(str) looks for at least one match, if found, returns
true , otherwise false .

 alert("No matches"); // now it works

}

Replacing: str.replace

// no flag g

alert("We will, we will".replace(/we/i, "I")); // I will, we will

// with flag g

alert("We will, we will".replace(/we/ig, "I")); // I will, I will

alert("I love HTML".replace(/HTML/, "$& and JavaScript")); // I love HTML and Java

Testing: regexp.test

●

●

●

●

●

Later in this chapter we’ll study more regular expressions, walk through more
examples, and also meet other methods.

Full information about the methods is given in the article Methods of RegExp and
String.

A regular expression consists of a pattern and optional flags: g , i , m , u , s ,
y .

Without flags and special symbols (that we’ll study later), the search by a regexp
is the same as a substring search.

The method str.match(regexp) looks for matches: all of them if there’s g
flag, otherwise, only the first one.

The method str.replace(regexp, replacement) replaces matches
found using regexp with replacement : all of them if there’s g flag, otherwise
only the first one.

The method regexp.test(str) returns true if there’s at least one match,
otherwise, it returns false .

Consider a practical task – we have a phone number like "+7(903)-123-45-
67" , and we need to turn it into pure numbers: 79035419441 .

To do so, we can find and remove anything that’s not a number. Character classes
can help with that.

A character class is a special notation that matches any symbol from a certain set.

For the start, let’s explore the “digit” class. It’s written as \d and corresponds to
“any single digit”.

For instance, the let’s find the first digit in the phone number:

let str = "I love JavaScript";

let regexp = /LOVE/i;

alert(regexp.test(str)); // true

Summary

Character classes

let str = "+7(903)-123-45-67";

let regexp = /\d/;

alert(str.match(regexp)); // 7

Without the flag g , the regular expression only looks for the first match, that is the
first digit \d .

Let’s add the g flag to find all digits:

That was a character class for digits. There are other character classes as well.

Most used are:

\d (“d” is from “digit”)

A digit: a character from 0 to 9 .

\s (“s” is from “space”)

A space symbol: includes spaces, tabs \t , newlines \n and few other rare
characters, such as \v , \f and \r .

\w (“w” is from “word”)

A “wordly” character: either a letter of Latin alphabet or a digit or an underscore _ .
Non-Latin letters (like cyrillic or hindi) do not belong to \w .

For instance, \d\s\w means a “digit” followed by a “space character” followed by a
“wordly character”, such as 1 a .

A regexp may contain both regular symbols and character classes.

For instance, CSS\d matches a string CSS with a digit after it:

Also we can use many character classes:

let str = "+7(903)-123-45-67";

let regexp = /\d/g;

alert(str.match(regexp)); // array of matches: 7,9,0,3,1,2,3,4,5,6,7

// let's make the digits-only phone number of them:

alert(str.match(regexp).join('')); // 79035419441

let str = "Is there CSS4?";

let regexp = /CSS\d/

alert(str.match(regexp)); // CSS4

The match (each regexp character class has the corresponding result character):

For every character class there exists an “inverse class”, denoted with the same
letter, but uppercased.

The “inverse” means that it matches all other characters, for instance:

\D

Non-digit: any character except \d , for instance a letter.

\S

Non-space: any character except \s , for instance a letter.

\W

Non-wordly character: anything but \w , e.g a non-latin letter or a space.

In the beginning of the chapter we saw how to make a number-only phone number
from a string like +7(903)-123-45-67 : find all digits and join them.

An alternative, shorter way is to find non-digits \D and remove them from the string:

A dot . is a special character class that matches “any character except a newline”.

For instance:

alert("I love HTML5!".match(/\s\w\w\w\w\d/)); // ' HTML5'

Inverse classes

let str = "+7(903)-123-45-67";

alert(str.match(/\d/g).join('')); // 79031234567

let str = "+7(903)-123-45-67";

alert(str.replace(/\D/g, "")); // 79031234567

A dot is “any character”

Or in the middle of a regexp:

Please note that a dot means “any character”, but not the “absense of a character”.
There must be a character to match it:

Dot as literally any character with “s” flag
By default, a dot doesn’t match the newline character \n .

For instance, the regexp A.B matches A , and then B with any character between
them, except a newline \n :

There are many situations when we’d like a dot to mean literally “any character”,
newline included.

That’s what flag s does. If a regexp has it, then a dot . matches literally any
character:

alert("Z".match(/./)); // Z

let regexp = /CS.4/;

alert("CSS4".match(regexp)); // CSS4

alert("CS-4".match(regexp)); // CS-4

alert("CS 4".match(regexp)); // CS 4 (space is also a character)

alert("CS4".match(/CS.4/)); // null, no match because there's no character for the

alert("A\nB".match(/A.B/)); // null (no match)

alert("A\nB".match(/A.B/s)); // A\nB (match!)

⚠ Not supported in Firefox, IE, Edge

Check https://caniuse.com/#search=dotall  for the most recent state of
support. At the time of writing it doesn’t include Firefox, IE, Edge.

Luckily, there’s an alternative, that works everywhere. We can use a regexp like
[\s\S] to match “any character”.

The pattern [\s\S] literally says: “a space character OR not a space
character”. In other words, “anything”. We could use another pair of
complementary classes, such as [\d\D] , that doesn’t matter.

This trick works everywhere. Also we can use it if we don’t want to set s flag, in
cases when we want a regular “no-newline” dot too in the pattern.

⚠ Pay attention to spaces

Usually we pay little attention to spaces. For us strings 1-5 and 1 - 5 are
nearly identical.

But if a regexp doesn’t take spaces into account, it may fail to work.

Let’s try to find digits separated by a hyphen:

Let’s fix it adding spaces into the regexp \d - \d :

A space is a character. Equal in importance with any other character.

We can’t add or remove spaces from a regular expression and expect to work
the same.

In other words, in a regular expression all characters matter, spaces too.

alert("A\nB".match(/A[\s\S]B/)); // A\nB (match!)

alert("1 - 5".match(/\d-\d/)); // null, no match!

alert("1 - 5".match(/\d - \d/)); // 1 - 5, now it works

// or we can use \s class:

alert("1 - 5".match(/\d\s-\s\d/)); // 1 - 5, also works

Summary

https://caniuse.com/#search=dotall

●

●

●

●

●

●

●

There exist following character classes:

\d – digits.

\D – non-digits.

\s – space symbols, tabs, newlines.

\S – all but \s .

\w – Latin letters, digits, underscore '_' .

\W – all but \w .

. – any character if with the regexp 's' flag, otherwise any except a newline
\n .

…But that’s not all!

Unicode encoding, used by JavaScript for strings, provides many properties for
characters, like: which language the letter belongs to (if it’s a letter) it is it a
punctuation sign, etc.

We can search by these properties as well. That requires flag u , covered in the next
article.

JavaScript uses Unicode encoding  for strings. Most characters are encoding with
2 bytes, but that allows to represent at most 65536 characters.

That range is not big enough to encode all possible characters, that’s why some rare
characters are encoded with 4 bytes, for instance like 𝒳 (mathematical X) or 😄 (a
smile), some hieroglyphs and so on.

Here are the unicode values of some characters:

Character Unicode Bytes count in unicode

a 0x0061 2

≈ 0x2248 2

𝒳 0x1d4b3 4

𝒴 0x1d4b4 4

😄 0x1f604 4

So characters like a and ≈ occupy 2 bytes, while codes for 𝒳 , 𝒴 and 😄 are
longer, they have 4 bytes.

Long time ago, when JavaScript language was created, Unicode encoding was
simpler: there were no 4-byte characters. So, some language features still handle

Unicode: flag "u" and class \p{...}

https://en.wikipedia.org/wiki/Unicode

them incorrectly.

For instance, length thinks that here are two characters:

…But we can see that there’s only one, right? The point is that length treats 4
bytes as two 2-byte characters. That’s incorrect, because they must be considered
only together (so-called “surrogate pair”, you can read about them in the article
Strings).

By default, regular expressions also treat 4-byte “long characters” as a pair of 2-byte
ones. And, as it happens with strings, that may lead to odd results. We’ll see that a
bit later, in the article Sets and ranges [...].

Unlike strings, regular expressions have flag u that fixes such problems. With such
flag, a regexp handles 4-byte characters correctly. And also Unicode property search
becomes available, we’ll get to it next.

⚠ Not supported in Firefox and Edge

Despite being a part of the standard since 2018, unicode proeprties are not
supported in Firefox (bug ) and Edge (bug ).

There’s XRegExp  library that provides “extended” regular expressions with
cross-browser support for unicode properties.

Every character in Unicode has a lot of properties. They describe what “category” the
character belongs to, contain miscellaneous information about it.

For instance, if a character has Letter property, it means that the character
belongs to an alphabet (of any language). And Number property means that it’s a
digit: maybe Arabic or Chinese, and so on.

We can search for characters with a property, written as \p{…} . To use \p{…} , a
regular expression must have flag u .

For instance, \p{Letter} denotes a letter in any of language. We can also use
\p{L} , as L is an alias of Letter . There are shorter aliases for almost every
property.

In the example below three kinds of letters will be found: English, Georgean and
Korean.

alert('😄'.length); // 2

alert('𝒳'.length); // 2

Unicode properties \p{…}

https://javascript.info/string
https://bugzilla.mozilla.org/show_bug.cgi?id=1361876
https://github.com/Microsoft/ChakraCore/issues/2969
http://xregexp.com/

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Here’s the main character categories and their subcategories:

Letter L :

lowercase Ll

modifier Lm ,

titlecase Lt ,

uppercase Lu ,

other Lo .

Number N :

decimal digit Nd ,

letter number Nl ,

other No .

Punctuation P :

connector Pc ,

dash Pd ,

initial quote Pi ,

final quote Pf ,

open Ps ,

close Pe ,

other Po .

Mark M (accents etc):

spacing combining Mc ,

enclosing Me ,

non-spacing Mn .

Symbol S :

currency Sc ,

modifier Sk ,

math Sm ,

other So .

Separator Z :

line Zl ,

paragraph Zp ,

let str = "A ბ �";

alert(str.match(/\p{L}/gu)); // A,ბ,�

alert(str.match(/\p{L}/g)); // null (no matches, as there's no flag "u")

●

●

●

●

●

●

●

●

●

●

●

●

●

space Zs .

Other C :

control Cc ,

format Cf ,

not assigned Cn , – private use Co ,

surrogate Cs .

So, e.g. if we need letters in lower case, we can write \p{Ll} , punctuation signs:
\p{P} and so on.

There are also other derived categories, like:

Alphabetic (Alpha), includes Letters L , plus letter numbers Nl (e.g. Ⅻ – a
character for the roman number 12), plus some other symbols
Other_Alphabetic (OAlpha).

Hex_Digit includes hexadecimal digits: 0-9 , a-f .

…And so on.

Unicode supports many different properties, their full list would require a lot of space,
so here are the references:

List all properties by a character: https://unicode.org/cldr/utility/character.jsp  .

List all characters by a property: https://unicode.org/cldr/utility/list-
unicodeset.jsp  .

Short aliases for properties:
https://www.unicode.org/Public/UCD/latest/ucd/PropertyValueAliases.txt  .

A full base of Unicode characters in text format, with all properties, is here:
https://www.unicode.org/Public/UCD/latest/ucd/  .

Example: hexadecimal numbers
For instance, let’s look for hexadecimal numbers, written as xFF , where F is a hex
digit (0…1 or A…F).

A hex digit can be denoted as \p{Hex_Digit} :

Example: Chinese hieroglyphs
Let’s look for Chinese hieroglyphs.

let regexp = /x\p{Hex_Digit}\p{Hex_Digit}/u;

alert("number: xAF".match(regexp)); // xAF

https://unicode.org/cldr/utility/character.jsp
https://unicode.org/cldr/utility/list-unicodeset.jsp
https://www.unicode.org/Public/UCD/latest/ucd/PropertyValueAliases.txt
https://www.unicode.org/Public/UCD/latest/ucd/

There’s a unicode property Script (a writing system), that may have a value:
Cyrillic , Greek , Arabic , Han (Chinese) and so on, here’s the full list.

To look for characters in a given writing system we should use Script=<value> ,
e.g. for Cyrillic letters: \p{sc=Cyrillic} , for Chinese hieroglyphs:
\p{sc=Han} , and so on:

Example: currency
Characters that denote a currency, such as $, € , ¥ , have unicode property
\p{Currency_Symbol} , the short alias: \p{Sc} .

Let’s use it to look for prices in the format “currency, followed by a digit”:

Later, in the article Quantifiers +, *, ? and {n} we’ll see how to look for numbers that
contain many digits.

Flag u enables the support of Unicode in regular expressions.

That means two things:

1. Characters of 4 bytes are handled correctly: as a single character, not two 2-byte
characters.

2. Unicode properties can be used in the search: \p{…} .

With Unicode properties we can look for words in given languages, special
characters (quotes, currencies) and so on.

let regexp = /\p{sc=Han}/gu; // returns Chinese hieroglyphs

let str = `Hello Привет 你好 123_456`;

alert(str.match(regexp)); // 你,好

let regexp = /\p{Sc}\d/gu;

let str = `Prices: $2, €1, ¥9`;

alert(str.match(regexp)); // $2,€1,¥9

Summary

Anchors: string start ^ and end $

https://javascript.info/article/regexp-unicode/%22https://en.wikipedia.org/wiki/Script_(Unicode)%22

The caret ^ and dollar $ characters have special meaning in a regexp. They are
called “anchors”.

The caret ^ matches at the beginning of the text, and the dollar $ – at the end.

For instance, let’s test if the text starts with Mary :

The pattern ^Mary means: “string start and then Mary”.

Similar to this, we can test if the string ends with snow using snow$:

In these particular cases we could use string methods startsWith/endsWith
instead. Regular expressions should be used for more complex tests.

Both anchors together ^...$ are often used to test whether or not a string fully
matches the pattern. For instance, to check if the user input is in the right format.

Let’s check whether or not a string is a time in 12:34 format. That is: two digits,
then a colon, and then another two digits.

In regular expressions language that’s \d\d:\d\d :

Here the match for \d\d:\d\d must start exactly after the beginning of the text ^ ,
and the end $ must immediately follow.

The whole string must be exactly in this format. If there’s any deviation or an extra
character, the result is false .

Anchors behave differently if flag m is present. We’ll see that in the next article.

let str1 = "Mary had a little lamb";

alert(/^Mary/.test(str1)); // true

let str1 = "it's fleece was white as snow";

alert(/snow$/.test(str1)); // true

Testing for a full match

let goodInput = "12:34";

let badInput = "12:345";

let regexp = /^\d\d:\d\d$/;

alert(regexp.test(goodInput)); // true

alert(regexp.test(badInput)); // false

 Anchors have “zero width”

Anchors ^ and $ are tests. They have zero width.

In other words, they do not match a character, but rather force the regexp engine
to check the condition (text start/end).

Regexp ^$

Which string matches the pattern ^$?

To solution

The multiline mode is enabled by the flag m .

It only affects the behavior of ^ and $.

In the multiline mode they match not only at the beginning and the end of the string,
but also at start/end of line.

In the example below the text has multiple lines. The pattern /^\d/gm takes a digit
from the beginning of each line:

Without the flag m only the first digit is matched:

✔ Tasks

Multiline mode of anchors ^ $, flag "m"

Searching at line start ^

let str = `1st place: Winnie

2nd place: Piglet

3rd place: Eeyore`;

alert(str.match(/^\d/gm)); // 1, 2, 3

let str = `1st place: Winnie

2nd place: Piglet

3rd place: Eeyore`;

alert(str.match(/^\d/g)); // 1

That’s because by default a caret ^ only matches at the beginning of the text, and in
the multiline mode – at the start of any line.

 Please note:

“Start of a line” formally means “immediately after a line break”: the test ^ in
multiline mode matches at all positions preceeded by a newline character \n .

And at the text start.

The dollar sign $ behaves similarly.

The regular expression \d$ finds the last digit in every line

Without the flag m , the dollar $ would only match the end of the whole text, so only
the very last digit would be found.

 Please note:

“End of a line” formally means “immediately before a line break”: the test $ in
multiline mode matches at all positions succeeded by a newline character \n .

And at the text end.

To find a newline, we can use not only anchors ^ and $, but also the newline
character \n .

What’s the difference? Let’s see an example.

Here we search for \d\n instead of \d$:

Searching at line end $

let str = `Winnie: 1

Piglet: 2

Eeyore: 3`;

alert(str.match(/\d$/gm)); // 1,2,3

Searching for \n instead of ^ $

let str = `Winnie: 1

Piglet: 2

Eeyore: 3`;

●

●

●

As we can see, there are 2 matches instead of 3.

That’s because there’s no newline after 3 (there’s text end though, so it matches
$).

Another difference: now every match includes a newline character \n . Unlike the
anchors ^ $, that only test the condition (start/end of a line), \n is a character, so
it becomes a part of the result.

So, a \n in the pattern is used when we need newline characters in the result, while
anchors are used to find something at the beginning/end of a line.

A word boundary \b is a test, just like ^ and $.

When the regexp engine (program module that implements searching for regexps)
comes across \b , it checks that the position in the string is a word boundary.

There are three different positions that qualify as word boundaries:

At string start, if the first string character is a word character \w .

Between two characters in the string, where one is a word character \w and the
other is not.

At string end, if the last string character is a word character \w .

For instance, regexp \bJava\b will be found in Hello, Java! , where Java is
a standalone word, but not in Hello, JavaScript! .

In the string Hello, Java! following positions correspond to \b :

So, it matches the pattern \bHello\b , because:

1. At the beginning of the string matches the first test \b .

2. Then matches the word Hello .

alert(str.match(/\d\n/gm)); // 1\n,2\n

Word boundary: \b

alert("Hello, Java!".match(/\bJava\b/)); // Java

alert("Hello, JavaScript!".match(/\bJava\b/)); // null

3. Then the test \b matches again, as we’re between o and a space.

The pattern \bJava\b would also match. But not \bHell\b (because there’s no
word boundary after l) and not Java!\b (because the exclamation sign is not a
wordly character \w , so there’s no word boundary after it).

We can use \b not only with words, but with digits as well.

For example, the pattern \b\d\d\b looks for standalone 2-digit numbers. In other
words, it looks for 2-digit numbers that are surrounded by characters different from
\w , such as spaces or punctuation (or text start/end).

⚠ Word boundary \b doesn’t work for non-latin alphabets

The word boundary test \b checks that there should be \w on the one side
from the position and "not \w " – on the other side.

But \w means a latin letter a-z (or a digit or an underscore), so the test
doesn’t work for other characters, e.g. cyrillic letters or hieroglyphs.

Find the time

The time has a format: hours:minutes . Both hours and minutes has two digits,
like 09:00 .

Make a regexp to find time in the string: Breakfast at 09:00 in the room
123:456.

P.S. In this task there’s no need to check time correctness yet, so 25:99 can also
be a valid result.

P.P.S. The regexp shouldn’t match 123:456 .

alert("Hello, Java!".match(/\bHello\b/)); // Hello

alert("Hello, Java!".match(/\bJava\b/)); // Java

alert("Hello, Java!".match(/\bHell\b/)); // null (no match)

alert("Hello, Java!".match(/\bJava!\b/)); // null (no match)

alert("1 23 456 78".match(/\b\d\d\b/g)); // 23,78

alert("12,34,56".match(/\b\d\d\b/g)); // 12,34,56

✔ Tasks

To solution

As we’ve seen, a backslash \ is used to denote character classes, e.g. \d . So it’s
a special character in regexps (just like in regular strings).

There are other special characters as well, that have special meaning in a regexp.
They are used to do more powerful searches. Here’s a full list of them: [\ ^ $.
| ? * + () .

Don’t try to remember the list – soon we’ll deal with each of them separately and
you’ll know them by heart automatically.

Let’s say we want to find literally a dot. Not “any character”, but just a dot.

To use a special character as a regular one, prepend it with a backslash: \. .

That’s also called “escaping a character”.

For example:

Parentheses are also special characters, so if we want them, we should use \(.
The example below looks for a string "g()" :

If we’re looking for a backslash \ , it’s a special character in both regular strings and
regexps, so we should double it.

A slash symbol '/' is not a special character, but in JavaScript it is used to open
and close the regexp: /...pattern.../ , so we should escape it too.

Escaping, special characters

Escaping

alert("Chapter 5.1".match(/\d\.\d/)); // 5.1 (match!)

alert("Chapter 511".match(/\d\.\d/)); // null (looking for a real dot \.)

alert("function g()".match(/g\(\)/)); // "g()"

alert("1\\2".match(/\\/)); // '\'

A slash

●

●

●

Here’s what a search for a slash '/' looks like:

On the other hand, if we’re not using /.../ , but create a regexp using new
RegExp , then we don’t need to escape it:

If we are creating a regular expression with new RegExp , then we don’t have to
escape / , but need to do some other escaping.

For instance, consider this:

The similar search in one of previous examples worked with /\d\.\d/ , but new
RegExp("\d\.\d") doesn’t work, why?

The reason is that backslashes are “consumed” by a string. As we may recall,
regular strings have their own special characters, such as \n , and a backslash is
used for escaping.

Here’s how “\d.\d” is preceived:

String quotes “consume” backslashes and interpret them on their own, for instance:

\n – becomes a newline character,

\u1234 – becomes the Unicode character with such code,

…And when there’s no special meaning: like \d or \z , then the backslash is
simply removed.

So new RegExp gets a string without backslashes. That’s why the search doesn’t
work!

alert("/".match(/\//)); // '/'

alert("/".match(new RegExp("/"))); // finds /

new RegExp

let regexp = new RegExp("\d\.\d");

alert("Chapter 5.1".match(regexp)); // null

alert("\d\.\d"); // d.d

●

●

●

●

To fix it, we need to double backslashes, because string quotes turn \\ into \ :

To search for special characters [\ ^ $. | ? * + () literally, we need
to prepend them with a backslash \ (“escape them”).

We also need to escape / if we’re inside /.../ (but not inside new RegExp).

When passing a string new RegExp , we need to double backslashes \\ , cause
string quotes consume one of them.

Several characters or character classes inside square brackets […] mean to
“search for any character among given”.

For instance, [eao] means any of the 3 characters: 'a' , 'e' , or 'o' .

That’s called a set. Sets can be used in a regexp along with regular characters:

Please note that although there are multiple characters in the set, they correspond to
exactly one character in the match.

So the example below gives no matches:

The pattern searches for:

V ,

let regStr = "\\d\\.\\d";

alert(regStr); // \d\.\d (correct now)

let regexp = new RegExp(regStr);

alert("Chapter 5.1".match(regexp)); // 5.1

Summary

Sets and ranges [...]

Sets

// find [t or m], and then "op"

alert("Mop top".match(/[tm]op/gi)); // "Mop", "top"

// find "V", then [o or i], then "la"

alert("Voila".match(/V[oi]la/)); // null, no matches

●

●

●

●

●

then one of the letters [oi] ,

then la .

So there would be a match for Vola or Vila .

Square brackets may also contain character ranges.

For instance, [a-z] is a character in range from a to z , and [0-5] is a digit
from 0 to 5 .

In the example below we’re searching for "x" followed by two digits or letters from
A to F :

Here [0-9A-F] has two ranges: it searches for a character that is either a digit
from 0 to 9 or a letter from A to F .

If we’d like to look for lowercase letters as well, we can add the range a-f : [0-
9A-Fa-f] . Or add the flag i .

We can also use character classes inside […] .

For instance, if we’d like to look for a wordly character \w or a hyphen - , then the
set is [\w-] .

Combining multiple classes is also possible, e.g. [\s\d] means “a space
character or a digit”.

 Character classes are shorthands for certain character sets

For instance:

\d – is the same as [0-9] ,

\w – is the same as [a-zA-Z0-9_] ,

\s – is the same as [\t\n\v\f\r] , plus few other rare unicode space
characters.

Example: multi-language \w
As the character class \w is a shorthand for [a-zA-Z0-9_] , it can’t find Chinese
hieroglyphs, Cyrillic letters, etc.

Ranges

alert("Exception 0xAF".match(/x[0-9A-F][0-9A-F]/g)); // xAF

●

●

●

●

●

●

We can write a more universal pattern, that looks for wordly characters in any
language. That’s easy with unicode properties:
[\p{Alpha}\p{M}\p{Nd}\p{Pc}\p{Join_C}] .

Let’s decipher it. Similar to \w , we’re making a set of our own that includes
characters with following unicode properties:

Alphabetic (Alpha) – for letters,

Mark (M) – for accents,

Decimal_Number (Nd) – for digits,

Connector_Punctuation (Pc) – for the underscore '_' and similar
characters,

Join_Control (Join_C) – two special codes 200c and 200d , used in
ligatures, e.g. in Arabic.

An example of use:

Of course, we can edit this pattern: add unicode properties or remove them. Unicode
properties are covered in more details in the article Unicode: flag "u" and class \p{...}.

⚠ Unicode properties aren’t supported in Edge and Firefox

Unicode properties p{…} are not yet implemented in Edge and Firefox. If we
really need them, we can use library XRegExp  .

Or just use ranges of characters in a language that interests us, e.g. [а-я] for
Cyrillic letters.

Besides normal ranges, there are “excluding” ranges that look like [^…] .

They are denoted by a caret character ^ at the start and match any character
except the given ones.

For instance:

[^aeyo] – any character except 'a' , 'e' , 'y' or 'o' .

let regexp = /[\p{Alpha}\p{M}\p{Nd}\p{Pc}\p{Join_C}]/gu;

let str = `Hi 你好 12`;

// finds all letters and digits:

alert(str.match(regexp)); // H,i,你,好,1,2

Excluding ranges

http://xregexp.com/

●

●

●

●

●

●

[^0-9] – any character except a digit, the same as \D .

[^\s] – any non-space character, same as \S .

The example below looks for any characters except letters, digits and spaces:

Usually when we want to find exactly a special character, we need to escape it like
\. . And if we need a backslash, then we use \\ , and so on.

In square brackets we can use the vast majority of special characters without
escaping:

Symbols . + () never need escaping.

A hyphen - is not escaped in the beginning or the end (where it does not define
a range).

A caret ^ is only escaped in the beginning (where it means exclusion).

The closing square bracket] is always escaped (if we need to look for that
symbol).

In other words, all special characters are allowed without escaping, except when
they mean something for square brackets.

A dot . inside square brackets means just a dot. The pattern [.,] would look for
one of characters: either a dot or a comma.

In the example below the regexp [-().^+] looks for one of the characters -
().^+ :

…But if you decide to escape them “just in case”, then there would be no harm:

alert("alice15@gmail.com".match(/[^\d\sA-Z]/gi)); // @ and .

Escaping in […]

// No need to escape

let regexp = /[-().^+]/g;

alert("1 + 2 - 3".match(regexp)); // Matches +, -

// Escaped everything

let regexp = /[\-\(\)\.\^\+]/g;

alert("1 + 2 - 3".match(regexp)); // also works: +, -

If there are surrogate pairs in the set, flag u is required for them to work correctly.

For instance, let’s look for [𝒳𝒴] in the string 𝒳 :

The result is incorrect, because by default regular expressions “don’t know” about
surrogate pairs.

The regular expression engine thinks that [𝒳𝒴] – are not two, but four characters:

1. left half of 𝒳 (1) ,

2. right half of 𝒳 (2) ,

3. left half of 𝒴 (3) ,

4. right half of 𝒴 (4) .

We can see their codes like this:

So, the example above finds and shows the left half of 𝒳 .

If we add flag u , then the behavior will be correct:

The similar situation occurs when looking for a range, such as [𝒳-𝒴] .

If we forget to add flag u , there will be an error:

The reason is that without flag u surrogate pairs are perceived as two characters,
so [𝒳-𝒴] is interpreted as [<55349><56499>-<55349><56500>] (every
surrogate pair is replaced with its codes). Now it’s easy to see that the range

Ranges and flag “u”

alert('𝒳'.match(/[𝒳𝒴]/)); // shows a strange character, like [?]

// (the search was performed incorrectly, half-character returned)

for(let i=0; i<'𝒳𝒴'.length; i++) {

 alert('𝒳𝒴'.charCodeAt(i)); // 55349, 56499, 55349, 56500

};

alert('𝒳'.match(/[𝒳𝒴]/u)); // 𝒳

'𝒳'.match(/[𝒳-𝒴]/); // Error: Invalid regular expression

56499-55349 is invalid: its starting code 56499 is greater than the end 55349 .
That’s the formal reason for the error.

With the flag u the pattern works correctly:

Java[^script]

We have a regexp /Java[^script]/ .

Does it match anything in the string Java ? In the string JavaScript ?

To solution

Find the time as hh:mm or hh-mm

The time can be in the format hours:minutes or hours-minutes . Both hours
and minutes have 2 digits: 09:00 or 21-30 .

Write a regexp to find time:

P.S. In this task we assume that the time is always correct, there’s no need to filter
out bad strings like “45:67”. Later we’ll deal with that too.

To solution

Let’s say we have a string like +7(903)-123-45-67 and want to find all numbers
in it. But unlike before, we are interested not in single digits, but full numbers: 7,
903, 123, 45, 67 .

A number is a sequence of 1 or more digits \d . To mark how many we need, we
can append a quantifier.

// look for characters from 𝒳 to 𝒵
alert('𝒴'.match(/[𝒳-𝒵]/u)); // 𝒴

✔ Tasks

let regexp = /your regexp/g;

alert("Breakfast at 09:00. Dinner at 21-30".match(regexp)); // 09:00, 21-30

Quantifiers +, *, ? and {n}

The simplest quantifier is a number in curly braces: {n} .

A quantifier is appended to a character (or a character class, or a [...] set etc)
and specifies how many we need.

It has a few advanced forms, let’s see examples:

The exact count: {5}

\d{5} denotes exactly 5 digits, the same as \d\d\d\d\d .

The example below looks for a 5-digit number:

We can add \b to exclude longer numbers: \b\d{5}\b .

The range: {3,5} , match 3-5 times

To find numbers from 3 to 5 digits we can put the limits into curly braces: \d{3,5}

We can omit the upper limit.

Then a regexp \d{3,} looks for sequences of digits of length 3 or more:

Let’s return to the string +7(903)-123-45-67 .

A number is a sequence of one or more digits in a row. So the regexp is \d{1,} :

There are shorthands for most used quantifiers:

Quantity {n}

alert("I'm 12345 years old".match(/\d{5}/)); // "12345"

alert("I'm not 12, but 1234 years old".match(/\d{3,5}/)); // "1234"

alert("I'm not 12, but 345678 years old".match(/\d{3,}/)); // "345678"

let str = "+7(903)-123-45-67";

let numbers = str.match(/\d{1,}/g);

alert(numbers); // 7,903,123,45,67

Shorthands

+

Means “one or more”, the same as {1,} .

For instance, \d+ looks for numbers:

?

Means “zero or one”, the same as {0,1} . In other words, it makes the symbol
optional.

For instance, the pattern ou?r looks for o followed by zero or one u , and then r .

So, colou?r finds both color and colour :

*

Means “zero or more”, the same as {0,} . That is, the character may repeat any
times or be absent.

For example, \d0* looks for a digit followed by any number of zeroes (may be
many or none):

Compare it with + (one or more):

Quantifiers are used very often. They serve as the main “building block” of complex
regular expressions, so let’s see more examples.

Regexp for decimal fractions (a number with a floating point): \d+\.\d+

let str = "+7(903)-123-45-67";

alert(str.match(/\d+/g)); // 7,903,123,45,67

let str = "Should I write color or colour?";

alert(str.match(/colou?r/g)); // color, colour

alert("100 10 1".match(/\d0*/g)); // 100, 10, 1

alert("100 10 1".match(/\d0+/g)); // 100, 10

// 1 not matched, as 0+ requires at least one zero

More examples

In action:

Regexp for an “opening HTML-tag without attributes”, such as or
<p> .

1. The simplest one: /<[a-z]+>/i

The regexp looks for character '<' followed by one or more Latin letters, and
then '>' .

2. Improved: /<[a-z][a-z0-9]*>/i

According to the standard, HTML tag name may have a digit at any position
except the first one, like <h1> .

Regexp “opening or closing HTML-tag without attributes”: /<\/?[a-z][a-
z0-9]*>/i

We added an optional slash /? near the beginning of the pattern. Had to escape it
with a backslash, otherwise JavaScript would think it is the pattern end.

alert("0 1 12.345 7890".match(/\d+\.\d+/g)); // 12.345

alert("<body> ... </body>".match(/<[a-z]+>/gi)); // <body>

alert("<h1>Hi!</h1>".match(/<[a-z][a-z0-9]*>/gi)); // <h1>

alert("<h1>Hi!</h1>".match(/<\/?[a-z][a-z0-9]*>/gi)); // <h1>, </h1>

 To make a regexp more precise, we often need make it more complex

We can see one common rule in these examples: the more precise is the regular
expression – the longer and more complex it is.

For instance, for HTML tags we could use a simpler regexp: <\w+> . But as
HTML has stricter restrictions for a tag name, <[a-z][a-z0-9]*> is more
reliable.

Can we use <\w+> or we need <[a-z][a-z0-9]*> ?

In real life both variants are acceptable. Depends on how tolerant we can be to
“extra” matches and whether it’s difficult or not to remove them from the result by
other means.

How to find an ellipsis "..." ?
importance: 5

Create a regexp to find ellipsis: 3 (or more?) dots in a row.

Check it:

To solution

Regexp for HTML colors

Create a regexp to search HTML-colors written as #ABCDEF : first # and then 6
hexadecimal characters.

An example of use:

P.S. In this task we do not need other color formats like #123 or rgb(1,2,3) etc.

✔ Tasks

let regexp = /your regexp/g;

alert("Hello!... How goes?.....".match(regexp)); // ...,

let regexp = /...your regexp.../

let str = "color:#121212; background-color:#AA00ef bad-colors:f#fddee #fd2 #12345678

alert(str.match(regexp)) // #121212,#AA00ef

●

●

●

To solution

Quantifiers are very simple from the first sight, but in fact they can be tricky.

We should understand how the search works very well if we plan to look for
something more complex than /\d+/ .

Let’s take the following task as an example.

We have a text and need to replace all quotes "..." with guillemet marks:
«...» . They are preferred for typography in many countries.

For instance: "Hello, world" should become «Hello, world» . There exist
other quotes, such as „Witam, świat!” (Polish) or 「你好，世界」 (Chinese),
but for our task let’s choose «...» .

The first thing to do is to locate quoted strings, and then we can replace them.

A regular expression like /".+"/g (a quote, then something, then the other quote)
may seem like a good fit, but it isn’t!

Let’s try it:

…We can see that it works not as intended!

Instead of finding two matches "witch" and "broom" , it finds one: "witch"
and her "broom" .

That can be described as “greediness is the cause of all evil”.

To find a match, the regular expression engine uses the following algorithm:

For every position in the string

Try to match the pattern at that position.

If there’s no match, go to the next position.

Greedy and lazy quantifiers

let regexp = /".+"/g;

let str = 'a "witch" and her "broom" is one';

alert(str.match(regexp)); // "witch" and her "broom"

Greedy search

These common words do not make it obvious why the regexp fails, so let’s elaborate
how the search works for the pattern ".+" .

1. The first pattern character is a quote " .

The regular expression engine tries to find it at the zero position of the source
string a "witch" and her "broom" is one , but there’s a there, so
there’s immediately no match.

Then it advances: goes to the next positions in the source string and tries to find
the first character of the pattern there, fails again, and finally finds the quote at the
3rd position:

a "witch" and her "broom" is one

2. The quote is detected, and then the engine tries to find a match for the rest of the
pattern. It tries to see if the rest of the subject string conforms to .+" .

In our case the next pattern character is . (a dot). It denotes “any character
except a newline”, so the next string letter 'w' fits:

a "witch" and her "broom" is one

3. Then the dot repeats because of the quantifier .+ . The regular expression
engine adds to the match one character after another.

…Until when? All characters match the dot, so it only stops when it reaches the
end of the string:

a "witch" and her "broom" is one

4. Now the engine finished repeating .+ and tries to find the next character of the
pattern. It’s the quote " . But there’s a problem: the string has finished, there are
no more characters!

The regular expression engine understands that it took too many .+ and starts to
backtrack.

In other words, it shortens the match for the quantifier by one character:

a "witch" and her "broom" is one

Now it assumes that .+ ends one character before the string end and tries to
match the rest of the pattern from that position.

If there were a quote there, then the search would end, but the last character is
'e' , so there’s no match.

5. …So the engine decreases the number of repetitions of .+ by one more
character:

a "witch" and her "broom" is one

The quote '"' does not match 'n' .

6. The engine keep backtracking: it decreases the count of repetition for '.' until
the rest of the pattern (in our case '"') matches:

a "witch" and her "broom" is one

7. The match is complete.

8. So the first match is "witch" and her "broom" . If the regular expression
has flag g , then the search will continue from where the first match ends. There
are no more quotes in the rest of the string is one , so no more results.

That’s probably not what we expected, but that’s how it works.

In the greedy mode (by default) a quantifier is repeated as many times as
possible.

The regexp engine adds to the match as many characters as it can for .+ , and then
shortens that one by one, if the rest of the pattern doesn’t match.

For our task we want another thing. That’s where a lazy mode can help.

The lazy mode of quantifiers is an opposite to the greedy mode. It means: “repeat
minimal number of times”.

We can enable it by putting a question mark '?' after the quantifier, so that it
becomes *? or +? or even ?? for '?' .

To make things clear: usually a question mark ? is a quantifier by itself (zero or
one), but if added after another quantifier (or even itself) it gets another meaning – it
switches the matching mode from greedy to lazy.

The regexp /".+?"/g works as intended: it finds "witch" and "broom" :

To clearly understand the change, let’s trace the search step by step.

1. The first step is the same: it finds the pattern start '"' at the 3rd position:

a "witch" and her "broom" is one

2. The next step is also similar: the engine finds a match for the dot '.' :

a "witch" and her "broom" is one

3. And now the search goes differently. Because we have a lazy mode for +? , the
engine doesn’t try to match a dot one more time, but stops and tries to match the
rest of the pattern '"' right now:

Lazy mode

let regexp = /".+?"/g;

let str = 'a "witch" and her "broom" is one';

alert(str.match(regexp)); // witch, broom

a "witch" and her "broom" is one

If there were a quote there, then the search would end, but there’s 'i' , so
there’s no match.

4. Then the regular expression engine increases the number of repetitions for the dot
and tries one more time:

a "witch" and her "broom" is one

Failure again. Then the number of repetitions is increased again and again…

5. …Till the match for the rest of the pattern is found:

a "witch" and her "broom" is one

6. The next search starts from the end of the current match and yield one more
result:

a "witch" and her "broom" is one

In this example we saw how the lazy mode works for +? . Quantifiers *? and ??
work the similar way – the regexp engine increases the number of repetitions only if
the rest of the pattern can’t match on the given position.

Laziness is only enabled for the quantifier with ? .

Other quantifiers remain greedy.

For instance:

1. The pattern \d+ tries to match as many digits as it can (greedy mode), so it finds
123 and stops, because the next character is a space ' ' .

2. Then there’s a space in the pattern, it matches.

3. Then there’s \d+? . The quantifier is in lazy mode, so it finds one digit 4 and
tries to check if the rest of the pattern matches from there.

…But there’s nothing in the pattern after \d+? .

The lazy mode doesn’t repeat anything without a need. The pattern finished, so
we’re done. We have a match 123 4 .

 Optimizations

Modern regular expression engines can optimize internal algorithms to work
faster. So they may work a bit differently from the described algorithm.

But to understand how regular expressions work and to build regular
expressions, we don’t need to know about that. They are only used internally to
optimize things.

Complex regular expressions are hard to optimize, so the search may work
exactly as described as well.

With regexps, there’s often more than one way to do the same thing.

In our case we can find quoted strings without lazy mode using the regexp "
[^"]+" :

The regexp "[^"]+" gives correct results, because it looks for a quote '"'
followed by one or more non-quotes [^"] , and then the closing quote.

When the regexp engine looks for [^"]+ it stops the repetitions when it meets the
closing quote, and we’re done.

alert("123 456".match(/\d+ \d+?/)); // 123 4

Alternative approach

let regexp = /"[^"]+"/g;

let str = 'a "witch" and her "broom" is one';

alert(str.match(regexp)); // witch, broom

Please note, that this logic does not replace lazy quantifiers!

It is just different. There are times when we need one or another.

Let’s see an example where lazy quantifiers fail and this variant works right.

For instance, we want to find links of the form ,
with any href .

Which regular expression to use?

The first idea might be: //g .

Let’s check it:

It worked. But let’s see what happens if there are many links in the text?

Now the result is wrong for the same reason as our “witches” example. The
quantifier .* took too many characters.

The match looks like this:

Let’s modify the pattern by making the quantifier .*? lazy:

let str = '......';

let regexp = //g;

// Works!

alert(str.match(regexp)); //

let str = '...... ...';

let regexp = //g;

// Whoops! Two links in one match!

alert(str.match(regexp)); // ... <a href="link2" class

...

let str = '...... ...';

let regexp = //g;

// Works!

alert(str.match(regexp)); // , <a href="link2" class="

Now it seems to work, there are two matches:

…But let’s test it on one more text input:

Now it fails. The match includes not just a link, but also a lot of text after it, including
<p...> .

Why?

That’s what’s going on:

1. First the regexp finds a link start <a href=" .

2. Then it looks for .*? : takes one character (lazily!), check if there’s a match for "
class="doc"> (none).

3. Then takes another character into .*? , and so on… until it finally reaches "
class="doc"> .

But the problem is: that’s already beyond the link <a...> , in another tag <p> . Not
what we want.

Here’s the picture of the match aligned with the text:

So, we need the pattern to look for <a href="...something..."
class="doc"> , but both greedy and lazy variants have problems.

The correct variant can be: href="[^"]*" . It will take all characters inside the
href attribute till the nearest quote, just what we need.

A working example:

...

let str = '...... <p style="" class="doc">...';

let regexp = //g;

// Wrong match!

alert(str.match(regexp)); // ... <p style="" class="

... <p style="" class="doc">

let str1 = '...... <p style="" class="doc">...';

let str2 = '...... ...';

Quantifiers have two modes of work:

Greedy

By default the regular expression engine tries to repeat the quantifier as many times
as possible. For instance, \d+ consumes all possible digits. When it becomes
impossible to consume more (no more digits or string end), then it continues to
match the rest of the pattern. If there’s no match then it decreases the number of
repetitions (backtracks) and tries again.

Lazy

Enabled by the question mark ? after the quantifier. The regexp engine tries to
match the rest of the pattern before each repetition of the quantifier.

As we’ve seen, the lazy mode is not a “panacea” from the greedy search. An
alternative is a “fine-tuned” greedy search, with exclusions, as in the pattern "
[^"]+" .

A match for /d+? d+?/

What’s the match here?

To solution

Find HTML comments

Find all HTML comments in the text:

let regexp = //g;

// Works!

alert(str1.match(regexp)); // null, no matches, that's correct

alert(str2.match(regexp)); // , <a href="link2" class=

Summary

✔ Tasks

"123 456".match(/\d+? \d+?/g)); // ?

let regexp = /your regexp/g;

let str = `... <!-- My -- comment

 test --> .. <!----> ..

To solution

Find HTML tags

Create a regular expression to find all (opening and closing) HTML tags with their
attributes.

An example of use:

Here we assume that tag attributes may not contain < and > (inside squotes too),
that simplifies things a bit.

To solution

A part of a pattern can be enclosed in parentheses (...) . This is called a
“capturing group”.

That has two effects:

1. It allows to get a part of the match as a separate item in the result array.

2. If we put a quantifier after the parentheses, it applies to the parentheses as a
whole.

Let’s see how parentheses work in examples.

Example: gogogo
Without parentheses, the pattern go+ means g character, followed by o repeated
one or more times. For instance, goooo or gooooooooo .

`;

alert(str.match(regexp)); // '<!-- My -- comment \n test -->', '<!---->'

let regexp = /your regexp/g;

let str = '<> <input type="radio" checked> ';

alert(str.match(regexp)); // '', '<input type="radio" checked>', '

Capturing groups

Examples

Parentheses group characters together, so (go)+ means go , gogo , gogogo
and so on.

Example: domain
Let’s make something more complex – a regular expression to search for a website
domain.

For example:

As we can see, a domain consists of repeated words, a dot after each one except
the last one.

In regular expressions that’s (\w+\.)+\w+ :

The search works, but the pattern can’t match a domain with a hyphen, e.g. my-
site.com , because the hyphen does not belong to class \w .

We can fix it by replacing \w with [\w-] in every word except the last one:
([\w-]+\.)+\w+ .

Example: email
The previous example can be extended. We can create a regular expression for
emails based on it.

The email format is: name@domain . Any word can be the name, hyphens and dots
are allowed. In regular expressions that’s [-.\w]+ .

The pattern:

alert('Gogogo now!'.match(/(go)+/i)); // "Gogogo"

mail.com

users.mail.com

smith.users.mail.com

let regexp = /(\w+\.)+\w+/g;

alert("site.com my.site.com".match(regexp)); // site.com,my.site.com

let regexp = /[-.\w]+@([\w-]+\.)+[\w-]+/g;

alert("my@mail.com @ his@site.com.uk".match(regexp)); // my@mail.com, his@site.com.u

That regexp is not perfect, but mostly works and helps to fix accidental mistypes.
The only truly reliable check for an email can only be done by sending a letter.

Parentheses are numbered from left to right. The search engine memorizes the
content matched by each of them and allows to get it in the result.

The method str.match(regexp) , if regexp has no flag g , looks for the first
match and returns it as an array:

1. At index 0 : the full match.

2. At index 1 : the contents of the first parentheses.

3. At index 2 : the contents of the second parentheses.

4. …and so on…

For instance, we’d like to find HTML tags <.*?> , and process them. It would be
convenient to have tag content (what’s inside the angles), in a separate variable.

Let’s wrap the inner content into parentheses, like this: <(.*?)> .

Now we’ll get both the tag as a whole <h1> and its contents h1 in the resulting
array:

Nested groups
Parentheses can be nested. In this case the numbering also goes from left to right.

For instance, when searching a tag in we may be interested
in:

1. The tag content as a whole: span class="my" .

2. The tag name: span .

3. The tag attributes: class="my" .

Let’s add parentheses for them: <(([a-z]+)\s*([^>]*))> .

Here’s how they are numbered (left to right, by the opening paren):

Parentheses contents in the match

let str = '<h1>Hello, world!</h1>';

let tag = str.match(/<(.*?)>/);

alert(tag[0]); // <h1>

alert(tag[1]); // h1

<(([a-z]+) \s* ([^>]*)) >
1

span class="my"

2
span

3
class="my"

In action:

The zero index of result always holds the full match.

Then groups, numbered from left to right by an opening paren. The first group is
returned as result[1] . Here it encloses the whole tag content.

Then in result[2] goes the group from the second opening paren ([a-z]+) –
tag name, then in result[3] the tag: ([^>]*) .

The contents of every group in the string:

<(([a-z]+) \s* ([^>]*)) >
1

span class="my"

2
span

3
class="my"

Optional groups
Even if a group is optional and doesn’t exist in the match (e.g. has the quantifier
(...)?), the corresponding result array item is present and equals
undefined .

For instance, let’s consider the regexp a(z)?(c)? . It looks for "a" optionally
followed by "z" optionally followed by "c" .

If we run it on the string with a single letter a , then the result is:

let str = '';

let regexp = /<(([a-z]+)\s*([^>]*))>/;

let result = str.match(regexp);

alert(result[0]); //

alert(result[1]); // span class="my"

alert(result[2]); // span

alert(result[3]); // class="my"

let match = 'a'.match(/a(z)?(c)?/);

The array has the length of 3 , but all groups are empty.

And here’s a more complex match for the string ac :

The array length is permanent: 3 . But there’s nothing for the group (z)? , so the
result is ["ac", undefined, "c"] .

⚠ matchAll is a new method, polyfill may be needed

The method matchAll is not supported in old browsers.

A polyfill may be required, such as
https://github.com/ljharb/String.prototype.matchAll  .

When we search for all matches (flag g), the match method does not return
contents for groups.

For example, let’s find all tags in a string:

The result is an array of matches, but without details about each of them. But in
practice we usually need contents of capturing groups in the result.

To get them, we should search using the method str.matchAll(regexp) .

alert(match.length); // 3

alert(match[0]); // a (whole match)

alert(match[1]); // undefined

alert(match[2]); // undefined

let match = 'ac'.match(/a(z)?(c)?/)

alert(match.length); // 3

alert(match[0]); // ac (whole match)

alert(match[1]); // undefined, because there's nothing for (z)?

alert(match[2]); // c

Searching for all matches with groups: matchAll

let str = '<h1> <h2>';

let tags = str.match(/<(.*?)>/g);

alert(tags); // <h1>,<h2>

https://github.com/ljharb/String.prototype.matchAll

It was added to JavaScript language long after match , as its “new and improved
version”.

Just like match , it looks for matches, but there are 3 differences:

1. It returns not an array, but an iterable object.

2. When the flag g is present, it returns every match as an array with groups.

3. If there are no matches, it returns not null , but an empty iterable object.

For instance:

As we can see, the first difference is very important, as demonstrated in the line
(*) . We can’t get the match as results[0] , because that object isn’t
pseudoarray. We can turn it into a real Array using Array.from . There are
more details about pseudoarrays and iterables in the article Iterables.

There’s no need in Array.from if we’re looping over results:

…Or using destructuring:

Every match, returned by matchAll , has the same format as returned by match
without flag g : it’s an array with additional properties index (match index in the

let results = '<h1> <h2>'.matchAll(/<(.*?)>/gi);

// results - is not an array, but an iterable object

alert(results); // [object RegExp String Iterator]

alert(results[0]); // undefined (*)

results = Array.from(results); // let's turn it into array

alert(results[0]); // <h1>,h1 (1st tag)

alert(results[1]); // <h2>,h2 (2nd tag)

let results = '<h1> <h2>'.matchAll(/<(.*?)>/gi);

for(let result of results) {

 alert(result);

 // первый вывод: <h1>,h1

 // второй: <h2>,h2

}

let [tag1, tag2] = '<h1> <h2>'.matchAll(/<(.*?)>/gi);

https://javascript.info/iterable

string) and input (source string):

 Why is a result of matchAll an iterable object, not an array?

Why is the method designed like that? The reason is simple – for the
optimization.

The call to matchAll does not perform the search. Instead, it returns an
iterable object, without the results initially. The search is performed each time we
iterate over it, e.g. in the loop.

So, there will be found as many results as needed, not more.

E.g. there are potentially 100 matches in the text, but in a for..of loop we
found 5 of them, then decided it’s enough and make a break . Then the engine
won’t spend time finding other 95 mathces.

Remembering groups by their numbers is hard. For simple patterns it’s doable, but
for more complex ones counting parentheses is inconvenient. We have a much
better option: give names to parentheses.

That’s done by putting ?<name> immediately after the opening paren.

For example, let’s look for a date in the format “year-month-day”:

As you can see, the groups reside in the .groups property of the match.

let results = '<h1> <h2>'.matchAll(/<(.*?)>/gi);

let [tag1, tag2] = results;

alert(tag1[0]); // <h1>

alert(tag1[1]); // h1

alert(tag1.index); // 0

alert(tag1.input); // <h1> <h2>

Named groups

let dateRegexp = /(?<year>[0-9]{4})-(?<month>[0-9]{2})-(?<day>[0-9]{2})/;

let str = "2019-04-30";

let groups = str.match(dateRegexp).groups;

alert(groups.year); // 2019

alert(groups.month); // 04

alert(groups.day); // 30

To look for all dates, we can add flag g .

We’ll also need matchAll to obtain full matches, together with groups:

Method str.replace(regexp, replacement) that replaces all matches with
regexp in str allows to use parentheses contents in the replacement string.
That’s done using $n , where n is the group number.

For example,

For named parentheses the reference will be $<name> .

For example, let’s reformat dates from “year-month-day” to “day.month.year”:

let dateRegexp = /(?<year>[0-9]{4})-(?<month>[0-9]{2})-(?<day>[0-9]{2})/g;

let str = "2019-10-30 2020-01-01";

let results = str.matchAll(dateRegexp);

for(let result of results) {

 let {year, month, day} = result.groups;

 alert(`${day}.${month}.${year}`);

 // first alert: 30.10.2019

 // second: 01.01.2020

}

Capturing groups in replacement

let str = "John Bull";

let regexp = /(\w+) (\w+)/;

alert(str.replace(regexp, '$2, $1')); // Bull, John

let regexp = /(?<year>[0-9]{4})-(?<month>[0-9]{2})-(?<day>[0-9]{2})/g;

let str = "2019-10-30, 2020-01-01";

alert(str.replace(regexp, '$<day>.$<month>.$<year>'));

// 30.10.2019, 01.01.2020

Non-capturing groups with ?:

●

●

Sometimes we need parentheses to correctly apply a quantifier, but we don’t want
their contents in results.

A group may be excluded by adding ?: in the beginning.

For instance, if we want to find (go)+ , but don’t want the parentheses contents
(go) as a separate array item, we can write: (?:go)+ .

In the example below we only get the name John as a separate member of the
match:

Parentheses group together a part of the regular expression, so that the quantifier
applies to it as a whole.

Parentheses groups are numbered left-to-right, and can optionally be named with
(?<name>...) .

The content, matched by a group, can be obtained in the results:

The method str.match returns capturing groups only without flag g .

The method str.matchAll always returns capturing groups.

If the parentheses have no name, then their contents is available in the match array
by its number. Named parentheses are also available in the property groups .

We can also use parentheses contents in the replacement string in str.replace :
by the number $n or the name $<name> .

A group may be excluded from numbering by adding ?: in its start. That’s used
when we need to apply a quantifier to the whole group, but don’t want it as a
separate item in the results array. We also can’t reference such parentheses in the
replacement string.

let str = "Gogogo John!";

// ?: exludes 'go' from capturing

let regexp = /(?:go)+ (\w+)/i;

let result = str.match(regexp);

alert(result[0]); // Gogogo John (full match)

alert(result[1]); // John

alert(result.length); // 2 (no more items in the array)

Summary

✔ Tasks

Check MAC-address

MAC-address  of a network interface consists of 6 two-digit hex numbers
separated by a colon.

For instance: '01:32:54:67:89:AB' .

Write a regexp that checks whether a string is MAC-address.

Usage:

To solution

Find color in the format #abc or #abcdef

Write a RegExp that matches colors in the format #abc or #abcdef . That is: #
followed by 3 or 6 hexadecimal digits.

Usage example:

P.S. This should be exactly 3 or 6 hex digits. Values with 4 digits, such as #abcd ,
should not match.

To solution

Find all numbers

Write a regexp that looks for all decimal numbers including integer ones, with the
floating point and negative ones.

let regexp = /your regexp/;

alert(regexp.test('01:32:54:67:89:AB')); // true

alert(regexp.test('0132546789AB')); // false (no colons)

alert(regexp.test('01:32:54:67:89')); // false (5 numbers, must be 6)

alert(regexp.test('01:32:54:67:89:ZZ')) // false (ZZ ad the end)

let regexp = /your regexp/g;

let str = "color: #3f3; background-color: #AA00ef; and: #abcd";

alert(str.match(regexp)); // #3f3 #AA00ef

https://en.wikipedia.org/wiki/MAC_address

●

●

●

●

An example of use:

To solution

Parse an expression

An arithmetical expression consists of 2 numbers and an operator between them, for
instance:

1 + 2

1.2 * 3.4

-3 / -6

-2 - 2

The operator is one of: "+" , "-" , "*" or "/" .

There may be extra spaces at the beginning, at the end or between the parts.

Create a function parse(expr) that takes an expression and returns an array of 3
items:

1. The first number.

2. The operator.

3. The second number.

For example:

To solution

let regexp = /your regexp/g;

let str = "-1.5 0 2 -123.4.";

alert(str.match(regexp)); // -1.5, 0, 2, -123.4

let [a, op, b] = parse("1.2 * 3.4");

alert(a); // 1.2

alert(op); // *

alert(b); // 3.4

Backreferences in pattern: \N and \k<name>

We can use the contents of capturing groups (...) not only in the result or in the
replacement string, but also in the pattern itself.

A group can be referenced in the pattern using \N , where N is the group number.

To make clear why that’s helpful, let’s consider a task.

We need to find quoted strings: either single-quoted '...' or a double-quoted
"..." – both variants should match.

How to find them?

We can put both kinds of quotes in the square brackets: ['"](.*?)['"] , but it
would find strings with mixed quotes, like "...' and '..." . That would lead to
incorrect matches when one quote appears inside other ones, like in the string
"She's the one!" :

As we can see, the pattern found an opening quote " , then the text is consumed till
the other quote ' , that closes the match.

To make sure that the pattern looks for the closing quote exactly the same as the
opening one, we can wrap it into a capturing group and backreference it: (['"])
(.*?)\1 .

Here’s the correct code:

Now it works! The regular expression engine finds the first quote (['"]) and
memorizes its content. That’s the first capturing group.

Further in the pattern \1 means “find the same text as in the first group”, exactly the
same quote in our case.

Backreference by number: \N

let str = `He said: "She's the one!".`;

let regexp = /['"](.*?)['"]/g;

// The result is not what we'd like to have

alert(str.match(regexp)); // "She'

let str = `He said: "She's the one!".`;

let regexp = /(['"])(.*?)\1/g;

alert(str.match(regexp)); // "She's the one!"

Similar to that, \2 would mean the contents of the second group, \3 – the 3rd
group, and so on.

 Please note:

If we use ?: in the group, then we can’t reference it. Groups that are excluded
from capturing (?:...) are not memorized by the engine.

⚠ Don’t mess up: in the pattern \1 , in the replacement: $1

In the replacement string we use a dollar sign: $1 , while in the pattern – a
backslash \1 .

If a regexp has many parentheses, it’s convenient to give them names.

To reference a named group we can use \k<имя> .

In the example below the group with quotes is named ?<quote> , so the
backreference is \k<quote> :

Alternation is the term in regular expression that is actually a simple “OR”.

In a regular expression it is denoted with a vertical line character | .

For instance, we need to find programming languages: HTML, PHP, Java or
JavaScript.

The corresponding regexp: html|php|java(script)? .

A usage example:

Backreference by name: \k<name>

let str = `He said: "She's the one!".`;

let regexp = /(?<quote>['"])(.*?)\k<quote>/g;

alert(str.match(regexp)); // "She's the one!"

Alternation (OR) |

let regexp = /html|php|css|java(script)?/gi;

let str = "First HTML appeared, then CSS, then JavaScript";

alert(str.match(regexp)); // 'HTML', 'CSS', 'JavaScript'

●

●

●

●

●

●

●

We already saw a similar thing – square brackets. They allow to choose between
multiple characters, for instance gr[ae]y matches gray or grey .

Square brackets allow only characters or character sets. Alternation allows any
expressions. A regexp A|B|C means one of expressions A , B or C .

For instance:

gr(a|e)y means exactly the same as gr[ae]y .

gra|ey means gra or ey .

To apply alternation to a chosen part of the pattern, we can enclose it in
parentheses:

I love HTML|CSS matches I love HTML or CSS .

I love (HTML|CSS) matches I love HTML or I love CSS .

In previous articles there was a task to build a regexp for searching time in the form
hh:mm , for instance 12:00 . But a simple \d\d:\d\d is too vague. It accepts
25:99 as the time (as 99 seconds match the pattern, but that time is invalid).

How can we make a better pattern?

We can use more careful matching. First, the hours:

If the first digit is 0 or 1 , then the next digit can be any: [01]\d .

Otherwise, if the first digit is 2 , then the next must be [0-3] .

(no other first digit is allowed)

We can write both variants in a regexp using alternation: [01]\d|2[0-3] .

Next, minutes must be from 00 to 59 . In the regular expression language that can
be written as [0-5]\d : the first digit 0-5 , and then any digit.

If we glue minutes and seconds together, we get the pattern: [01]\d|2[0-3]:
[0-5]\d .

We’re almost done, but there’s a problem. The alternation | now happens to be
between [01]\d and 2[0-3]:[0-5]\d .

That is: minutes are added to the second alternation variant, here’s a clear picture:

Example: regexp for time

[01]\d | 2[0-3]:[0-5]\d

That pattern looks for [01]\d or 2[0-3]:[0-5]\d .

But that’s wrong, the alternation should only be used in the “hours” part of the regular
expression, to allow [01]\d OR 2[0-3] . Let’s correct that by enclosing “hours”
into parentheses: ([01]\d|2[0-3]):[0-5]\d .

The final solution:

Find programming languages

There are many programming languages, for instance Java, JavaScript, PHP, C,
C++.

Create a regexp that finds them in the string Java JavaScript PHP C++ C :

To solution

Find bbtag pairs

A “bb-tag” looks like [tag]...[/tag] , where tag is one of: b , url or
quote .

For instance:

BB-tags can be nested. But a tag can’t be nested into itself, for instance:

let regexp = /([01]\d|2[0-3]):[0-5]\d/g;

alert("00:00 10:10 23:59 25:99 1:2".match(regexp)); // 00:00,10:10,23:59

✔ Tasks

let regexp = /your regexp/g;

alert("Java JavaScript PHP C++ C".match(regexp)); // Java JavaScript PHP C++ C

[b]text[/b]

[url]http://google.com[/url]

Normal:

[url] [b]http://google.com[/b] [/url]

[quote] [b]text[/b] [/quote]

Tags can contain line breaks, that’s normal:

Create a regexp to find all BB-tags with their contents.

For instance:

If tags are nested, then we need the outer tag (if we want we can continue the
search in its content):

To solution

Find quoted strings

Create a regexp to find strings in double quotes "..." .

The strings should support escaping, the same way as JavaScript strings do. For
instance, quotes can be inserted as \" a newline as \n , and the slash itself as
\\ .

Please note, in particular, that an escaped quote \" does not end a string.

So we should search from one quote to the other ignoring escaped quotes on the
way.

That’s the essential part of the task, otherwise it would be trivial.

Can't happen:

[b][b]text[/b][/b]

[quote]

 [b]text[/b]

[/quote]

let regexp = /your regexp/flags;

let str = "..[url]http://google.com[/url]..";

alert(str.match(regexp)); // [url]http://google.com[/url]

let regexp = /your regexp/flags;

let str = "..[url][b]http://google.com[/b][/url]..";

alert(str.match(regexp)); // [url][b]http://google.com[/b][/url]

let str = "Just like \"here\".";

Examples of strings to match:

In JavaScript we need to double the slashes to pass them right into the string, like
this:

To solution

Find the full tag

Write a regexp to find the tag <style...> . It should match the full tag: it may have
no attributes <style> or have several of them <style type="..."
id="..."> .

…But the regexp should not match <styler> !

For instance:

To solution

Sometimes we need to find only those matches for a pattern that are followed or
preceeded by another pattern.

There’s a special syntax for that, called “lookahead” and “lookbehind”, together
referred to as “lookaround”.

For the start, let’s find the price from the string like 1 turkey costs 30€ . That
is: a number, followed by € sign.

 .. "test me" ..

.. "Say \"Hello\"!" ... (escaped quotes inside)

.. "\\" .. (double slash inside)

.. "\\ \"" .. (double slash and an escaped quote inside)

let str = ' .. "test me" .. "Say \\"Hello\\"!" .. "\\\\ \\"" .. ';

// the in-memory string

alert(str); // .. "test me" .. "Say \"Hello\"!" .. "\\ \"" ..

let regexp = /your regexp/g;

alert('<style> <styler> <style test="...">'.match(regexp)); // <style>, <style tes

Lookahead and lookbehind

The syntax is: X(?=Y) , it means "look for X , but match only if followed by Y ".
There may be any pattern instead of X and Y .

For an integer number followed by € , the regexp will be \d+(?=€) :

Please note: the lookahead is merely a test, the contents of the parentheses (?
=...) is not included in the result 30 .

When we look for X(?=Y) , the regular expression engine finds X and then checks
if there’s Y immediately after it. If it’s not so, then the potential match is skipped, and
the search continues.

More complex tests are possible, e.g. X(?=Y)(?=Z) means:

1. Find X .

2. Check if Y is immediately after X (skip if isn’t).

3. Check if Z is immediately after X (skip if isn’t).

4. If both tests passed, then it’s the match.

In other words, such pattern means that we’re looking for X followed by Y and Z at
the same time.

That’s only possible if patterns Y and Z aren’t mutually exclusive.

For example, \d+(?=\s)(?=.*30) looks for \d+ only if it’s followed by a space,
and there’s 30 somewhere after it:

In our string that exactly matches the number 1 .

Let’s say that we want a quantity instead, not a price from the same string. That’s a
number \d+ , NOT followed by € .

For that, a negative lookahead can be applied.

Lookahead

let str = "1 turkey costs 30€";

alert(str.match(/\d+(?=€)/)); // 30, the number 1 is ignored, as it's not followed

let str = "1 turkey costs 30€";

alert(str.match(/\d+(?=\s)(?=.*30)/)); // 1

Negative lookahead

●

●

The syntax is: X(?!Y) , it means "search X , but only if not followed by Y ".

Lookahead allows to add a condition for “what follows”.

Lookbehind is similar, but it looks behind. That is, it allows to match a pattern only if
there’s something before it.

The syntax is:

Positive lookbehind: (?<=Y)X , matches X , but only if there’s Y before it.

Negative lookbehind: (?<!Y)X , matches X , but only if there’s no Y before it.

For example, let’s change the price to US dollars. The dollar sign is usually before
the number, so to look for $30 we’ll use (?<=\$)\d+ – an amount preceded by
$:

And, if we need the quantity – a number, not preceded by $, then we can use a
negative lookbehind (?<!\$)\d+ :

Generally, the contents inside lookaround parentheses does not become a part of
the result.

E.g. in the pattern \d+(?=€) , the € sign doesn’t get captured as a part of the
match. That’s natural: we look for a number \d+ , while (?=€) is just a test that it
should be followed by € .

let str = "2 turkeys cost 60€";

alert(str.match(/\d+(?!€)/)); // 2 (the price is skipped)

Lookbehind

let str = "1 turkey costs $30";

// the dollar sign is escaped \$

alert(str.match(/(?<=\$)\d+/)); // 30 (skipped the sole number)

let str = "2 turkeys cost $60";

alert(str.match(/(?<!\$)\d+/)); // 2 (skipped the price)

Capturing groups

But in some situations we might want to capture the lookaround expression as well,
or a part of it. That’s possible. Just wrap that part into additional parentheses.

In the example below the currency sign (€|kr) is captured, along with the amount:

And here’s the same for lookbehind:

Lookahead and lookbehind (commonly referred to as “lookaround”) are useful when
we’d like to match something depending on the context before/after it.

For simple regexps we can do the similar thing manually. That is: match everything,
in any context, and then filter by context in the loop.

Remember, str.match (without flag g) and str.matchAll (always) return
matches as arrays with index property, so we know where exactly in the text it is,
and can check the context.

But generally lookaround is more convenient.

Lookaround types:

Pattern type matches

X(?=Y) Positive lookahead X if followed by Y

X(?!Y) Negative lookahead X if not followed by Y

(?<=Y)X Positive lookbehind X if after Y

(?<!Y)X Negative lookbehind X if not after Y

Find non-negative integers

let str = "1 turkey costs 30€";

let regexp = /\d+(?=(€|kr))/; // extra parentheses around €|kr

alert(str.match(regexp)); // 30, €

let str = "1 turkey costs $30";

let regexp = /(?<=(\$|£))\d+/;

alert(str.match(regexp)); // 30, $

Summary

✔ Tasks

There’s a string of integer numbers.

Create a regexp that looks for only non-negative ones (zero is allowed).

An example of use:

To solution

Вставьте после фрагмента

Есть строка с HTML-документом.

Вставьте после тега <body> (у него могут быть атрибуты) строку
<h1>Hello</h1> .

Например:

После этого значение str :

To solution

let regexp = /your regexp/g;

let str = "0 12 -5 123 -18";

alert(str.match(regexp)); // 0, 12, 123

let regexp = /ваше регулярное выражение/;

let str = `

<html>

 <body style="height: 200px">

 ...

 </body>

</html>

`;

str = str.replace(regexp, `<h1>Hello</h1>`);

<html>

 <body style="height: 200px"><h1>Hello</h1>

 ...

 </body>

</html>

Some regular expressions are looking simple, but can execute veeeeeery long time,
and even “hang” the JavaScript engine.

Sooner or later most developers occasionally face such behavior, because it’s quite
easy to create such a regexp.

The typical symptom – a regular expression works fine sometimes, but for certain
strings it “hangs”, consuming 100% of CPU.

In such case a web-browser suggests to kill the script and reload the page. Not a
good thing for sure.

For server-side JavaScript it may become a vulnerability if regular expressions
process user data.

Let’s say we have a string, and we’d like to check if it consists of words \w+ with an
optional space \s? after each.

We’ll use a regexp ^(\w+\s?)*$, it specifies 0 or more such words.

In action:

It seems to work. The result is correct. Although, on certain strings it takes a lot of
time. So long that JavaScript engine “hangs” with 100% CPU consumption.

If you run the example below, you probably won’t see anything, as JavaScript will
just “hang”. A web-browser will stop reacting on events, the UI will stop working.
After some time it will suggest to reloaad the page. So be careful with this:

Some regular expression engines can handle such search, but most of them can’t.

Catastrophic backtracking

Example

let regexp = /^(\w+\s?)*$/;

alert(regexp.test("A good string")); // true

alert(regexp.test("Bad characters: $@#")); // false

let regexp = /^(\w+\s?)*$/;

let str = "An input string that takes a long time or even makes this regexp to hang

// will take a very long time

alert(regexp.test(str));

What’s the matter? Why the regular expression “hangs”?

To understand that, let’s simplify the example: remove spaces \s? . Then it
becomes ^(\w+)*$.

And, to make things more obvious, let’s replace \w with \d . The resulting regular
expression still hangs, for instance:

So what’s wrong with the regexp?

First, one may notice that the regexp (\d+)* is a little bit strange. The quantifier *
looks extraneous. If we want a number, we can use \d+ .

Indeed, the regexp is artificial. But the reason why it is slow is the same as those we
saw above. So let’s understand it, and then the previous example will become
obvious.

What happens during the search of ^(\d+)*$ in the line 123456789!
(shortened a bit for clarity), why does it take so long?

1. First, the regexp engine tries to find a number \d+ . The plus + is greedy by
default, so it consumes all digits:

Then it tries to apply the star quantifier, but there are no more digits, so it the star
doesn’t give anything.

The next in the pattern is the string end $, but in the text we have ! , so there’s
no match:

Simplified example

let regexp = /^(\d+)*$/;

let str = "012345678901234567890123456789!";

// will take a very long time

alert(regexp.test(str));

\d+.......

(123456789)z

 X

\d+........$

(123456789)!

2. As there’s no match, the greedy quantifier + decreases the count of repetitions,
backtracks one character back.

Now \d+ takes all digits except the last one:

3. Then the engine tries to continue the search from the new position (9).

The star (\d+)* can be applied – it gives the number 9 :

The engine tries to match $ again, but fails, because meets ! :

4. There’s no match, so the engine will continue backtracking, decreasing the
number of repetitions. Backtracking generally works like this: the last greedy
quantifier decreases the number of repetitions until it can. Then the previous
greedy quantifier decreases, and so on.

All possible combinations are attempted. Here are their examples.

The first number \d+ has 7 digits, and then a number of 2 digits:

The first number has 7 digits, and then two numbers of 1 digit each:

The first number has 6 digits, and then a number of 3 digits:

\d+.......

(12345678)9!

\d+.......\d+

(12345678)(9)!

 X

\d+.......\d+

(12345678)(9)z

 X

\d+......\d+

(1234567)(89)!

 X

\d+......\d+\d+

(1234567)(8)(9)!

The first number has 6 digits, and then 2 numbers:

…And so on.

There are many ways to split a set of digits 123456789 into numbers. To be

precise, there are 2n-1 , where n is the length of the set.

For n=20 there are about 1 million combinations, for n=30 – a thousand times
more. Trying each of them is exactly the reason why the search takes so long.

What to do?

Should we turn on the lazy mode?

Unfortunately, that won’t help: if we replace \d+ with \d+? , the regexp will still
hang. The order of combinations will change, but not their total count.

Some regular expression engines have tricky tests and finite automations that allow
to avoid going through all combinations or make it much faster, but not all engines,
and not in all cases.

The similar thing happens in our first example, when we look words by pattern
^(\w+\s?)*$ in the string An input that hangs! .

The reason is that a word can be represented as one \w+ or many:

For a human, it’s obvious that there may be no match, because the string ends with
an exclamation sign ! , but the regular expression expects a wordly character \w or
a space \s at the end. But the engine doesn’t know that.

 X

\d+.......\d+

(123456)(789)!

 X

\d+.....\d+ \d+

(123456)(78)(9)!

Back to words and strings

(input)

(inpu)(t)

(inp)(u)(t)

(in)(p)(ut)

...

It tries all combinations of how the regexp (\w+\s?)* can “consume” the string,
including variants with spaces (\w+\s)* and without them (\w+)* (because
spaces \s? are optional). As there are many such combinations, the search takes a
lot of time.

There are two main approaches to fixing the problem.

The first is to lower the number of possible combinations.

Let’s rewrite the regular expression as ^(\w+\s)*\w* – we’ll look for any number
of words followed by a space (\w+\s)* , and then (optionally) a word \w* .

This regexp is equivalent to the previous one (matches the same) and works well:

Why did the problem disappear?

Now the star * goes after \w+\s instead of \w+\s? . It became impossible to
represent one word of the string with multiple successive \w+ . The time needed to
try such combinations is now saved.

For example, the previous pattern (\w+\s?)* could match the word string as
two \w+ :

The previous pattern, due to the optional \s allowed variants \w+ , \w+\s ,
\w+\w+ and so on.

With the rewritten pattern (\w+\s)* , that’s impossible: there may be \w+\s or
\w+\s\w+\s , but not \w+\w+ . So the overall combinations count is greatly
decreased.

It’s not always convenient to rewrite a regexp. And it’s not always obvious how to do
it.

How to fix?

let regexp = /^(\w+\s)*\w*$/;

let str = "An input string that takes a long time or even makes this regex to hang!"

alert(regexp.test(str)); // false

\w+\w+

string

Preventing backtracking

●

●

●

The alternative approach is to forbid backtracking for the quantifier.

The regular expressions engine tries many combinations that are obviously wrong
for a human.

E.g. in the regexp (\d+)*$ it’s obvious for a human, that + shouldn’t backtrack. If
we replace one \d+ with two separate \d+\d+ , nothing changes:

And in the original example ^(\w+\s?)*$ we may want to forbid backtracking in
\w+ . That is: \w+ should match a whole word, with the maximal possible length.
There’s no need to lower the repetitions count in \w+ , try to split it into two words
\w+\w+ and so on.

Modern regular expression engines support possessive quantifiers for that. They are
like greedy ones, but don’t backtrack (so they are actually simpler than regular
quantifiers).

There are also so-called “atomic capturing groups” – a way to disable backtracking
inside parentheses.

Unfortunately, in JavaScript they are not supported. But there’s another way.

Lookahead to the rescue!
We can prevent backtracking using lookahead.

The pattern to take as much repetitions of \w as possible without backtracking is:
(?=(\w+))\1 .

Let’s decipher it:

Lookahead ?= looks forward for the longest word \w+ starting at the current
position.

The contents of parentheses with ?=... isn’t memorized by the engine, so wrap
\w+ into parentheses. Then the engine will memorize their contents

…And allow us to reference it in the pattern as \1 .

That is: we look ahead – and if there’s a word \w+ , then match it as \1 .

Why? That’s because the lookahead finds a word \w+ as a whole and we capture it
into the pattern with \1 . So we essentially implemented a possessive plus +
quantifier. It captures only the whole word \w+ , not a part of it.

\d+........

(123456789)!

\d+...\d+....

(1234)(56789)!

For instance, in the word JavaScript it may not only match Java , but leave out
Script to match the rest of the pattern.

Here’s the comparison of two patterns:

1. In the first variant \w+ first captures the whole word JavaScript but then +
backtracks character by character, to try to match the rest of the pattern, until it
finally succeeds (when \w+ matches Java).

2. In the second variant (?=(\w+)) looks ahead and finds the word
JavaScript , that is included into the pattern as a whole by \1 , so there
remains no way to find Script after it.

We can put a more complex regular expression into (?=(\w+))\1 instead of \w ,
when we need to forbid backtracking for + after it.

 Please note:

There’s more about the relation between possessive quantifiers and lookahead
in articles Regex: Emulate Atomic Grouping (and Possessive Quantifiers) with
LookAhead  and Mimicking Atomic Groups  .

Let’s rewrite the first example using lookahead to prevent backtracking:

Here \2 is used instead of \1 , because there are additional outer parentheses. To
avoid messing up with the numbers, we can give the parentheses a name, e.g. (?
<word>\w+) .

alert("JavaScript".match(/\w+Script/)); // JavaScript

alert("JavaScript".match(/(?=(\w+))\1Script/)); // null

let regexp = /^((?=(\w+))\2\s?)*$/;

alert(regexp.test("A good string")); // true

let str = "An input string that takes a long time or even makes this regex to hang!"

alert(regexp.test(str)); // false, works and fast!

// parentheses are named ?<word>, referenced as \k<word>

let regexp = /^((?=(?<word>\w+))\k<word>\s?)*$/;

let str = "An input string that takes a long time or even makes this regex to hang!"

http://instanceof.me/post/52245507631/regex-emulate-atomic-grouping-with-lookahead
http://blog.stevenlevithan.com/archives/mimic-atomic-groups

●

●

The problem described in this article is called “catastrophic backtracking”.

We covered two ways how to solve it:

Rewrite the regexp to lower the possible combinations count.

Prevent backtracking.

The flag y allows to perform the search at the given position in the source string.

To grasp the use case of y flag, and see how great it is, let’s explore a practical use
case.

One of common tasks for regexps is “lexical analysis”: we get a text, e.g. in a
programming language, and analyze it for structural elements.

For instance, HTML has tags and attributes, JavaScript code has functions,
variables, and so on.

Writing lexical analyzers is a special area, with its own tools and algorithms, so we
don’t go deep in there, but there’s a common task: to read something at the given
position.

E.g. we have a code string let varName = "value" , and we need to read the
variable name from it, that starts at position 4 .

We’ll look for variable name using regexp \w+ . Actually, JavaScript variable names
need a bit more complex regexp for accurate matching, but here it doesn’t matter.

A call to str.match(/\w+/) will find only the first word in the line. Or all words
with the flag g . But we need only one word at position 4 .

To search from the given position, we can use method regexp.exec(str) .

If the regexp doesn’t have flags g or y , then this method looks for the first match
in the string str , exactly like str.match(regexp) . Such simple no-flags case
doesn’t interest us here.

If there’s flag g , then it performs the search in the string str , starting from position
stored in its regexp.lastIndex property. And, if it finds a match, then sets
regexp.lastIndex to the index immediately after the match.

When a regexp is created, its lastIndex is 0 .

So, successive calls to regexp.exec(str) return matches one after another.

alert(regexp.test(str)); // false

alert(regexp.test("A correct string")); // true

Sticky flag "y", searching at position

An example (with flag g):

Every match is returned as an array with groups and additional properties.

We can get all matches in the loop:

Such use of regexp.exec is an alternative to method str.matchAll .

Unlike other methods, we can set our own lastIndex , to start the search from the
given position.

For instance, let’s find a word, starting from position 4 :

let str = 'let varName';

let regexp = /\w+/g;

alert(regexp.lastIndex); // 0 (initially lastIndex=0)

let word1 = regexp.exec(str);

alert(word1[0]); // let (1st word)

alert(regexp.lastIndex); // 3 (position after the match)

let word2 = regexp.exec(str);

alert(word2[0]); // varName (2nd word)

alert(regexp.lastIndex); // 11 (position after the match)

let word3 = regexp.exec(str);

alert(word3); // null (no more matches)

alert(regexp.lastIndex); // 0 (resets at search end)

let str = 'let varName';

let regexp = /\w+/g;

let result;

while (result = regexp.exec(str)) {

 alert(`Found ${result[0]} at position ${result.index}`);

 // Found let at position 0, then

 // Found varName at position 4

}

let str = 'let varName = "value"';

let regexp = /\w+/g; // without flag "g", property lastIndex is ignored

regexp.lastIndex = 4;

We performed a search of \w+ , starting from position regexp.lastIndex = 4 .

Please note: the search starts at position lastIndex and then goes further. If
there’s no word at position lastIndex , but it’s somewhere after it, then it will be
found:

…So, with flag g property lastIndex sets the starting position for the search.

Flag y makes regexp.exec to look exactly at position lastIndex , not
before, not after it.

Here’s the same search with flag y :

As we can see, regexp /\w+/y doesn’t match at position 3 (unlike the flag g), but
matches at position 4 .

Imagine, we have a long text, and there are no matches in it, at all. Then searching
with flag g will go till the end of the text, and this will take significantly more time
than the search with flag y .

In such tasks like lexical analysis, there are usually many searches at an exact
position. Using flag y is the key for a good performance.

let word = regexp.exec(str);

alert(word); // varName

let str = 'let varName = "value"';

let regexp = /\w+/g;

regexp.lastIndex = 3;

let word = regexp.exec(str);

alert(word[0]); // varName

alert(word.index); // 4

let str = 'let varName = "value"';

let regexp = /\w+/y;

regexp.lastIndex = 3;

alert(regexp.exec(str)); // null (there's a space at position 3, not a word)

regexp.lastIndex = 4;

alert(regexp.exec(str)); // varName (word at position 4)

In this article we’ll cover various methods that work with regexps in-depth.

The method str.match(regexp) finds matches for regexp in the string str .

It has 3 modes:

1. If the regexp doesn’t have flag g , then it returns the first match as an array with
capturing groups and properties index (position of the match), input (input
string, equals str):

2. If the regexp has flag g , then it returns an array of all matches as strings,
without capturing groups and other details.

3. If there are no matches, no matter if there’s flag g or not, null is returned.

That’s an important nuance. If there are no matches, we don’t get an empty array,
but null . It’s easy to make a mistake forgetting about it, e.g.:

Methods of RegExp and String

str.match(regexp)

let str = "I love JavaScript";

let result = str.match(/Java(Script)/);

alert(result[0]); // JavaScript (full match)

alert(result[1]); // Script (first capturing group)

alert(result.length); // 2

// Additional information:

alert(result.index); // 0 (match position)

alert(result.input); // I love JavaScript (source string)

let str = "I love JavaScript";

let result = str.match(/Java(Script)/g);

alert(result[0]); // JavaScript

alert(result.length); // 1

let str = "I love JavaScript";

let result = str.match(/HTML/);

If we want the result to be an array, we can write like this:

⚠ A recent addition

This is a recent addition to the language. Old browsers may need polyfills.

The method str.matchAll(regexp) is a “newer, improved” variant of
str.match .

It’s used mainly to search for all matches with all groups.

There are 3 differences from match :

1. It returns an iterable object with matches instead of an array. We can make a
regular array from it using Array.from .

2. Every match is returned as an array with capturing groups (the same format as
str.match without flag g).

3. If there are no results, it returns not null , but an empty iterable object.

Usage example:

alert(result); // null

alert(result.length); // Error: Cannot read property 'length' of null

let result = str.match(regexp) || [];

str.matchAll(regexp)

let str = '<h1>Hello, world!</h1>';

let regexp = /<(.*?)>/g;

let matchAll = str.matchAll(regexp);

alert(matchAll); // [object RegExp String Iterator], not array, but an iterable

matchAll = Array.from(matchAll); // array now

let firstMatch = matchAll[0];

alert(firstMatch[0]); // <h1>

alert(firstMatch[1]); // h1

alert(firstMatch.index); // 0

alert(firstMatch.input); // <h1>Hello, world!</h1>

If we use for..of to loop over matchAll matches, then we don’t need
Array.from , разумеется, не нужен.

Splits the string using the regexp (or a substring) as a delimiter.

We can use split with strings, like this:

But we can split by a regular expression, the same way:

The method str.search(regexp) returns the position of the first match or -1 if
none found:

The important limitation: search only finds the first match.

If we need positions of further matches, we should use other means, such as finding
them all with str.matchAll(regexp) .

This is a generic method for searching and replacing, one of most useful ones. The
swiss army knife for searching and replacing.

We can use it without regexps, to search and replace a substring:

There’s a pitfall though.

str.split(regexp|substr, limit)

alert('12-34-56'.split('-')) // array of [12, 34, 56]

alert('12, 34, 56'.split(/,\s*/)) // array of [12, 34, 56]

str.search(regexp)

let str = "A drop of ink may make a million think";

alert(str.search(/ink/i)); // 10 (first match position)

str.replace(str|regexp, str|func)

// replace a dash by a colon

alert('12-34-56'.replace("-", ":")) // 12:34-56

When the first argument of replace is a string, it only replaces the first
match.

You can see that in the example above: only the first "-" is replaced by ":" .

To find all hyphens, we need to use not the string "-" , but a regexp /-/g , with the
obligatory g flag:

The second argument is a replacement string. We can use special character in it:

| Symbols | Action in the replacement string |

Symbols Action in the replacement string

$& inserts the whole match

$` inserts a part of the string before the match

$' inserts a part of the string after the match

$n
if n is a 1-2 digit number, inserts the contents of n-th capturing group, for details see Capturing

groups

$<name> inserts the contents of the parentheses with the given name , for details see Capturing groups

$$ inserts character $

For instance:

For situations that require “smart” replacements, the second argument can be
a function.

It will be called for each match, and the returned value will be inserted as a
replacement.

The function is called with arguments func(match, p1, p2, ..., pn,
offset, input, groups) :

1. match – the match,

2. p1, p2, ..., pn – contents of capturing groups (if there are any),

3. offset – position of the match,

// replace all dashes by a colon

alert('12-34-56'.replace(/-/g, ":")) // 12:34:56

let str = "John Smith";

// swap first and last name

alert(str.replace(/(john) (smith)/i, '$2, $1')) // Smith, John

4. input – the source string,

5. groups – an object with named groups.

If there are no parentheses in the regexp, then there are only 3 arguments:
func(str, offset, input) .

For example, let’s uppercase all matches:

Replace each match by its position in the string:

In the example below there are two parentheses, so the replacement function is
called with 5 arguments: the first is the full match, then 2 parentheses, and after it
(not used in the example) the match position and the source string:

If there are many groups, it’s convenient to use rest parameters to access them:

Если в регулярном выражении много скобочных групп, то бывает удобно
использовать остаточные аргументы для обращения к ним:

Or, if we’re using named groups, then groups object with them is always the last,
so we can obtain it like this:

let str = "html and css";

let result = str.replace(/html|css/gi, str => str.toUpperCase());

alert(result); // HTML and CSS

alert("Ho-Ho-ho".replace(/ho/gi, (match, offset) => offset)); // 0-3-6

let str = "John Smith";

let result = str.replace(/(\w+) (\w+)/, (match, name, surname) => `${surname}, ${nam

alert(result); // Smith, John

let str = "John Smith";

let result = str.replace(/(\w+) (\w+)/, (...match) => `${match[2]}, ${match[1]}`);

alert(result); // Smith, John

●

●

●

●

Using a function gives us the ultimate replacement power, because it gets all the
information about the match, has access to outer variables and can do everything.

The method regexp.exec(str) method returns a match for regexp in the
string str . Unlike previous methods, it’s called on a regexp, not on a string.

It behaves differently depending on whether the regexp has flag g .

If there’s no g , then regexp.exec(str) returns the first match exactly as
str.match(regexp) . This behavior doesn’t bring anything new.

But if there’s flag g , then:

A call to regexp.exec(str) returns the first match and saves the position
immediately after it in the property regexp.lastIndex .

The next such call starts the search from position regexp.lastIndex , returns
the next match and saves the position after it in regexp.lastIndex .

…And so on.

If there are no matches, regexp.exec returns null and resets
regexp.lastIndex to 0 .

So, repeated calls return all matches one after another, using property
regexp.lastIndex to keep track of the current search position.

In the past, before the method str.matchAll was added to JavaScript, calls of
regexp.exec were used in the loop to get all matches with groups:

let str = "John Smith";

let result = str.replace(/(?<name>\w+) (?<surname>\w+)/, (...match) => {

 let groups = match.pop();

 return `${groups.surname}, ${groups.name}`;

});

alert(result); // Smith, John

regexp.exec(str)

let str = 'More about JavaScript at https://javascript.info';

let regexp = /javascript/ig;

let result;

while (result = regexp.exec(str)) {

 alert(`Found ${result[0]} at position ${result.index}`);

This works now as well, although for newer browsers str.matchAll is usually
more convenient.

We can use regexp.exec to search from a given position by manually
setting lastIndex .

For instance:

If the regexp has flag y , then the search will be performed exactly at the position
regexp.lastIndex , not any further.

Let’s replace flag g with y in the example above. There will be no matches, as
there’s no word at position 5 :

That’s convenient for situations when we need to “read” something from the string by
a regexp at the exact position, not somewhere further.

The method regexp.test(str) looks for a match and returns true/false
whether it exists.

For instance:

 // Found JavaScript at position 11, then

 // Found javascript at position 33

}

let str = 'Hello, world!';

let regexp = /\w+/g; // without flag "g", lastIndex property is ignored

regexp.lastIndex = 5; // search from 5th position (from the comma)

alert(regexp.exec(str)); // world

let str = 'Hello, world!';

let regexp = /\w+/y;

regexp.lastIndex = 5; // search exactly at position 5

alert(regexp.exec(str)); // null

regexp.test(str)

let str = "I love JavaScript";

// these two tests do the same

An example with the negative answer:

If the regexp has flag g , then regexp.test looks from regexp.lastIndex
property and updates this property, just like regexp.exec .

So we can use it to search from a given position:

⚠ Same global regexp tested repeatedly on different sources may fail

If we apply the same global regexp to different inputs, it may lead to wrong result,
because regexp.test call advances regexp.lastIndex property, so the
search in another string may start from non-zero position.

For instance, here we call regexp.test twice on the same text, and the
second time fails:

That’s exactly because regexp.lastIndex is non-zero in the second test.

To work around that, we can set regexp.lastIndex = 0 before each
search. Or instead of calling methods on regexp, use string methods
str.match/search/... , they don’t use lastIndex .

alert(/love/i.test(str)); // true

alert(str.search(/love/i) != -1); // true

let str = "Bla-bla-bla";

alert(/love/i.test(str)); // false

alert(str.search(/love/i) != -1); // false

let regexp = /love/gi;

let str = "I love JavaScript";

// start the search from position 10:

regexp.lastIndex = 10;

alert(regexp.test(str)); // false (no match)

let regexp = /javascript/g; // (regexp just created: regexp.lastIndex=0)

alert(regexp.test("javascript")); // true (regexp.lastIndex=10 now)

alert(regexp.test("javascript")); // false

Concatenate typed arrays

Open the solution with tests in a sandbox. 

To formulation

Fetch users from GitHub

To fetch a user we need:
fetch('https://api.github.com/users/USERNAME') .

If the response has status 200 , call .json() to read the JS object.

Otherwise, if a fetch fails, or the response has non-200 status, we just
return null in the resulting arrray.

So here’s the code:

Solutions
ArrayBuffer, binary arrays

function concat(arrays) {

 // sum of individual array lengths

 let totalLength = arrays.reduce((acc, value) => acc + value.length, 0);

 if (!arrays.length) return null;

 let result = new Uint8Array(totalLength);

 // for each array - copy it over result

 // next array is copied right after the previous one

 let length = 0;

 for(let array of arrays) {

 result.set(array, length);

 length += array.length;

 }

 return result;

}

Fetch

https://plnkr.co/edit/UMcQxckJCCrrQgDjTwom?p=preview

Please note: .then call is attached directly to fetch , so that when we
have the response, it doesn’t wait for other fetches, but starts to read
.json() immediately.

If we used await Promise.all(names.map(name =>
fetch(...))) , and call .json() on the results, then it would wait for all
fetches to respond. By adding .json() directly to each fetch , we ensure
that individual fetches start reading data as JSON without waiting for each
other.

That’s an example of how low-level Promise API can still be useful even if we
mainly use async/await .

Open the solution with tests in a sandbox. 

To formulation

Why do we need Origin?

async function getUsers(names) {

 let jobs = [];

 for(let name of names) {

 let job = fetch(`https://api.github.com/users/${name}`).then(

 successResponse => {

 if (successResponse.status != 200) {

 return null;

 } else {

 return successResponse.json();

 }

 },

 failResponse => {

 return null;

 }

);

 jobs.push(job);

 }

 let results = await Promise.all(jobs);

 return results;

}

Fetch: Cross-Origin Requests

https://plnkr.co/edit/Hbvi0zOb3rJOmo7iejgj?p=preview

We need Origin , because sometimes Referer is absent. For instance,
when we fetch HTTP-page from HTTPS (access less secure from more
secure), then there’s no Referer .

The Content Security Policy  may forbid sending a Referer .

As we’ll see, fetch has options that prevent sending the Referer and
even allow to change it (within the same site).

By specification, Referer is an optional HTTP-header.

Exactly because Referer is unreliable, Origin was invented. The
browser guarantees correct Origin for cross-origin requests.

To formulation

Autosave a form field

Open the solution in a sandbox. 

To formulation

Animate a plane (CSS)

CSS to animate both width and height :

LocalStorage, sessionStorage

CSS-animations

/* original class */

#flyjet {

 transition: all 3s;

}

/* JS adds .growing */

#flyjet.growing {

 width: 400px;

 height: 240px;

}

http://en.wikipedia.org/wiki/Content_Security_Policy
https://plnkr.co/edit/8b4IGvUVBGO6RsLvc4iy?p=preview

Please note that transitionend triggers two times – once for every
property. So if we don’t perform an additional check then the message would
show up 2 times.

Open the solution in a sandbox. 

To formulation

Animate the flying plane (CSS)

We need to choose the right Bezier curve for that animation. It should have
y>1 somewhere for the plane to “jump out”.

For instance, we can take both control points with y>1 , like: cubic-
bezier(0.25, 1.5, 0.75, 1.5) .

The graph:

1

2 3

4

Open the solution in a sandbox. 

To formulation

Animated circle

Open the solution in a sandbox. 

To formulation

Animate the bouncing ball

JavaScript animations

https://plnkr.co/edit/XlotdJmAgKHe0HtlTdKc?p=preview
https://plnkr.co/edit/ug1EHwYJKIEasmn425Kn?p=preview
https://plnkr.co/edit/ZwLVZnjrWytiKvL1eqQo?p=preview

To bounce we can use CSS property top and position:absolute for
the ball inside the field with position:relative .

The bottom coordinate of the field is field.clientHeight . The CSS
top property refers to the upper edge of the ball. So it should go from 0 till
field.clientHeight - ball.clientHeight , that’s the final lowest
position of the upper edge of the ball.

To to get the “bouncing” effect we can use the timing function bounce in
easeOut mode.

Here’s the final code for the animation:

Open the solution in a sandbox. 

To formulation

Animate the ball bouncing to the right

In the task Animate the bouncing ball we had only one property to animate.
Now we need one more: elem.style.left .

The horizontal coordinate changes by another law: it does not “bounce”, but
gradually increases shifting the ball to the right.

We can write one more animate for it.

As the time function we could use linear , but something like
makeEaseOut(quad) looks much better.

The code:

let to = field.clientHeight - ball.clientHeight;

animate({

 duration: 2000,

 timing: makeEaseOut(bounce),

 draw(progress) {

 ball.style.top = to * progress + 'px'

 }

});

let height = field.clientHeight - ball.clientHeight;

let width = 100;

// animate top (bouncing)

https://plnkr.co/edit/0qHtUcq2D70cLlj30xBM?p=preview

Open the solution in a sandbox. 

To formulation

Live timer element

Please note:

1. We clear setInterval timer when the element is removed from the
document. That’s important, otherwise it continues ticking even if not
needed any more. And the browser can’t clear the memory from this
element and referenced by it.

2. We can access current date as elem.date property. All class
methods and properties are naturally element methods and properties.

Open the solution in a sandbox. 

To formulation

Regexp ^$

animate({

 duration: 2000,

 timing: makeEaseOut(bounce),

 draw: function(progress) {

 ball.style.top = height * progress + 'px'

 }

});

// animate left (moving to the right)

animate({

 duration: 2000,

 timing: makeEaseOut(quad),

 draw: function(progress) {

 ball.style.left = width * progress + "px"

 }

});

Custom elements

Anchors: string start ^ and end $

https://plnkr.co/edit/qYee5ST4QfyqY6xvgA7u?p=preview
https://plnkr.co/edit/4c1c6mdCRs9LfdAdkkD8?p=preview

●

●

An empty string is the only match: it starts and immediately finishes.

The task once again demonstrates that anchors are not characters, but tests.

The string is empty "" . The engine first matches the ^ (input start), yes it’s
there, and then immediately the end $, it’s here too. So there’s a match.

To formulation

Find the time

The answer: \b\d\d:\d\d\b .

To formulation

Java[^script]

Answers: no, yes.

In the script Java it doesn’t match anything, because [^script]
means “any character except given ones”. So the regexp looks for
"Java" followed by one such symbol, but there’s a string end, no
symbols after it.

Yes, because the part [^script] part matches the character "S" . It’s
not one of script . As the regexp is case-sensitive (no i flag), it treats
"S" as a different character from "s" .

Word boundary: \b

alert("Breakfast at 09:00 in the room 123:456.".match(/\b\d\d:\d\d\b/));

Sets and ranges [...]

alert("Java".match(/Java[^script]/)); // null

alert("JavaScript".match(/Java[^script]/)); // "JavaS"

To formulation

Find the time as hh:mm or hh-mm

Answer: \d\d[-:]\d\d .

Please note that the dash '-' has a special meaning in square brackets,
but only between other characters, not when it’s in the beginning or at the
end, so we don’t need to escape it.

To formulation

How to find an ellipsis "..." ?

Solution:

Please note that the dot is a special character, so we have to escape it and
insert as \. .

To formulation

Regexp for HTML colors

We need to look for # followed by 6 hexadecimal characters.

A hexadecimal character can be described as [0-9a-fA-F] . Or if we use
the i flag, then just [0-9a-f] .

Then we can look for 6 of them using the quantifier {6} .

As a result, we have the regexp: /#[a-f0-9]{6}/gi .

let regexp = /\d\d[-:]\d\d/g;

alert("Breakfast at 09:00. Dinner at 21-30".match(regexp)); // 09:00, 21-3

Quantifiers +, *, ? and {n}

let regexp = /\.{3,}/g;

alert("Hello!... How goes?.....".match(regexp)); // ...,

The problem is that it finds the color in longer sequences:

To fix that, we can add \b to the end:

To formulation

A match for /d+? d+?/

The result is: 123 4 .

First the lazy \d+? tries to take as little digits as it can, but it has to reach
the space, so it takes 123 .

Then the second \d+? takes only one digit, because that’s enough.

To formulation

Find HTML comments

We need to find the beginning of the comment <!-- , then everything till the
end of --> .

An acceptable variant is <!--.*?--> – the lazy quantifier makes the dot
stop right before --> . We also need to add flag s for the dot to include
newlines.

let regexp = /#[a-f0-9]{6}/gi;

let str = "color:#121212; background-color:#AA00ef bad-colors:f#fddee #fd2"

alert(str.match(regexp)); // #121212,#AA00ef

alert("#12345678".match(/#[a-f0-9]{6}/gi)) // #12345678

// color

alert("#123456".match(/#[a-f0-9]{6}\b/gi)); // #123456

// not a color

alert("#12345678".match(/#[a-f0-9]{6}\b/gi)); // null

Greedy and lazy quantifiers

Otherwise multiline comments won’t be found:

To formulation

Find HTML tags

The solution is <[^<>]+> .

To formulation

Check MAC-address

A two-digit hex number is [0-9a-f]{2} (assuming the flag i is set).

We need that number NN , and then :NN repeated 5 times (more numbers);

The regexp is: [0-9a-f]{2}(:[0-9a-f]{2}){5}

Now let’s show that the match should capture all the text: start at the
beginning and end at the end. That’s done by wrapping the pattern in
^...$.

Finally:

let regexp = /<!--.*?-->/gs;

let str = `... <!-- My -- comment

 test --> .. <!----> ..

`;

alert(str.match(regexp)); // '<!-- My -- comment \n test -->', '<!---->'

let regexp = /<[^<>]+>/g;

let str = '<> <input type="radio" checked> ';

alert(str.match(regexp)); // '', '<input type="radio" checked>

Capturing groups

let regexp = /^[0-9a-fA-F]{2}(:[0-9a-fA-F]{2}){5}$/i;

To formulation

Find color in the format #abc or #abcdef

A regexp to search 3-digit color #abc : /#[a-f0-9]{3}/i .

We can add exactly 3 more optional hex digits. We don’t need more or less.
The color has either 3 or 6 digits.

Let’s use the quantifier {1,2} for that: we’ll have /#([a-f0-9]{3})
{1,2}/i .

Here the pattern [a-f0-9]{3} is enclosed in parentheses to apply the
quantifier {1,2} .

In action:

There’s a minor problem here: the pattern found #abc in #abcd . To
prevent that we can add \b to the end:

To formulation

Find all numbers

alert(regexp.test('01:32:54:67:89:AB')); // true

alert(regexp.test('0132546789AB')); // false (no colons)

alert(regexp.test('01:32:54:67:89')); // false (5 numbers, need 6)

alert(regexp.test('01:32:54:67:89:ZZ')) // false (ZZ in the end)

let regexp = /#([a-f0-9]{3}){1,2}/gi;

let str = "color: #3f3; background-color: #AA00ef; and: #abcd";

alert(str.match(regexp)); // #3f3 #AA00ef #abc

let regexp = /#([a-f0-9]{3}){1,2}\b/gi;

let str = "color: #3f3; background-color: #AA00ef; and: #abcd";

alert(str.match(regexp)); // #3f3 #AA00ef

A positive number with an optional decimal part is (per previous task): \d+
(\.\d+)? .

Let’s add the optional - in the beginning:

To formulation

Parse an expression

A regexp for a number is: -?\d+(\.\d+)? . We created it in previous
tasks.

An operator is [-+*/] . The hyphen - goes first in the square brackets,
because in the middle it would mean a character range, while we just want a
character - .

The slash / should be escaped inside a JavaScript regexp /.../ , we’ll do
that later.

We need a number, an operator, and then another number. And optional
spaces between them.

The full regular expression: -?\d+(\.\d+)?\s*[-+*/]\s*-?\d+
(\.\d+)? .

It has 3 parts, with \s* between them:

1. -?\d+(\.\d+)? – the first number,

2. [-+*/] – the operator,

3. -?\d+(\.\d+)? – the second number.

To make each of these parts a separate element of the result array, let’s
enclose them in parentheses: (-?\d+(\.\d+)?)\s*([-+*/])\s*(-?
\d+(\.\d+)?) .

In action:

let regexp = /-?\d+(\.\d+)?/g;

let str = "-1.5 0 2 -123.4.";

alert(str.match(regexp)); // -1.5, 0, 2, -123.4

●

●

●

●

●

●

The result includes:

result[0] == "1.2 + 12" (full match)

result[1] == "1.2" (first group (-?\d+(\.\d+)?) – the first
number, including the decimal part)

result[2] == ".2" (second group (\.\d+)? – the first decimal
part)

result[3] == "+" (third group ([-+*\/]) – the operator)

result[4] == "12" (forth group (-?\d+(\.\d+)?) – the second
number)

result[5] == undefined (fifth group (\.\d+)? – the last decimal
part is absent, so it’s undefined)

We only want the numbers and the operator, without the full match or the
decimal parts, so let’s “clean” the result a bit.

The full match (the arrays first item) can be removed by shifting the array
result.shift() .

Groups that contain decimal parts (number 2 and 4) (.\d+) can be
excluded by adding ?: to the beginning: (?:\.\d+)? .

The final solution:

To formulation

let regexp = /(-?\d+(\.\d+)?)\s*([-+*\/])\s*(-?\d+(\.\d+)?)/;

alert("1.2 + 12".match(regexp));

function parse(expr) {

 let regexp = /(-?\d+(?:\.\d+)?)\s*([-+*\/])\s*(-?\d+(?:\.\d+)?)/;

 let result = expr.match(regexp);

 if (!result) return [];

 result.shift();

 return result;

}

alert(parse("-1.23 * 3.45")); // -1.23, *, 3.45

Find programming languages

The first idea can be to list the languages with | in-between.

But that doesn’t work right:

The regular expression engine looks for alternations one-by-one. That is: first
it checks if we have Java , otherwise – looks for JavaScript and so on.

As a result, JavaScript can never be found, just because Java is
checked first.

The same with C and C++ .

There are two solutions for that problem:

1. Change the order to check the longer match first:
JavaScript|Java|C\+\+|C|PHP .

2. Merge variants with the same start: Java(Script)?|C(\+\+)?
|PHP .

In action:

To formulation

Find bbtag pairs

Opening tag is \[(b|url|quote)\] .

Alternation (OR) |

let regexp = /Java|JavaScript|PHP|C|C\+\+/g;

let str = "Java, JavaScript, PHP, C, C++";

alert(str.match(regexp)); // Java,Java,PHP,C,C

let regexp = /Java(Script)?|C(\+\+)?|PHP/g;

let str = "Java, JavaScript, PHP, C, C++";

alert(str.match(regexp)); // Java,JavaScript,PHP,C,C++

●

●

●

●

Then to find everything till the closing tag – let’s use the pattern .*? with
flag s to match any character including the newline and then add a
backreference to the closing tag.

The full pattern: \[(b|url|quote)\].*?\[/\1\] .

In action:

Please note that besides escaping [and] , we had to escape a slash for
the closing tag [\/\1] , because normally the slash closes the pattern.

To formulation

Find quoted strings

The solution: /"(\\.|[^"\\])*"/g .

Step by step:

First we look for an opening quote "

Then if we have a backslash \\ (we technically have to double it in the
pattern, because it is a special character, so that’s a single backslash in
fact), then any character is fine after it (a dot).

Otherwise we take any character except a quote (that would mean the end
of the string) and a backslash (to prevent lonely backslashes, the
backslash is only used with some other symbol after it): [^"\\]

…And so on till the closing quote.

In action:

let regexp = /\[(b|url|quote)\].*?\[\/\1\]/gs;

let str = `

 [b]hello![/b]

 [quote]

 [url]http://google.com[/url]

 [/quote]

`;

alert(str.match(regexp)); // [b]hello![/b],[quote][url]http://google.com[/

let regexp = /"(\\.|[^"\\])*"/g;

let str = ' .. "test me" .. "Say \\"Hello\\"!" .. "\\\\ \\"" .. ';

alert(str.match(regexp)); // "test me","Say \"Hello\"!","\\ \""

To formulation

Find the full tag

The pattern start is obvious: <style .

…But then we can’t simply write <style.*?> , because <styler> would
match it.

We need either a space after <style and then optionally something else or
the ending > .

In the regexp language: <style(>|\s.*?>) .

In action:

To formulation

Find non-negative integers

The regexp for an integer number is \d+ .

We can exclude negatives by prepending it with the negative lookahead: (?
<!-)\d+ .

Although, if we try it now, we may notice one more “extra” result:

let regexp = /<style(>|\s.*?>)/g;

alert('<style> <styler> <style test="...">'.match(regexp)); // <style>, <s

Lookahead and lookbehind

let regexp = /(?<!-)\d+/g;

let str = "0 12 -5 123 -18";

console.log(str.match(regexp)); // 0, 12, 123, 8

As you can see, it matches 8 , from -18 . To exclude it, we need to ensure
that the regexp starts matching a number not from the middle of another
(non-matching) number.

We can do it by specifying another negative lookbehind: (?<!-)(?
<!\d)\d+ . Now (?<!\d) ensures that a match does not start after
another digit, just what we need.

We can also join them into a single lookbehind here:

To formulation

Вставьте после фрагмента

Для того, чтобы вставить после тега <body> , нужно вначале его найти.
Будем использовать регулярное выражение <body.*> .

Далее, нам нужно оставить сам тег <body> на месте и добавить текст
после него.

Это можно сделать вот так:

В строке замены $& означает само совпадение, то есть мы заменяем
<body.*> заменяется на самого себя плюс <h1>Hello</h1> .

Альтернативный вариант – использовать ретроспективную проверку:

let regexp = /(?<![-\d])\d+/g;

let str = "0 12 -5 123 -18";

alert(str.match(regexp)); // 0, 12, 123

let str = '...<body style="...">...';

str = str.replace(/<body.*>/, '$&<h1>Hello</h1>');

alert(str); // ...<body style="..."><h1>Hello</h1>...

let str = '...<body style="...">...';

str = str.replace(/(?<=<body.*>)/, `<h1>Hello</h1>`);

alert(str); // ...<body style="..."><h1>Hello</h1>...

Такое регулярное выражение на каждой позиции будет проверять, не
идёт ли прямо перед ней <body.*> . Если да – совпадение найдено.
Но сам тег <body.*> в совпадение не входит, он только участвует в
проверке. А других символов после проверки в нём нет, так что текст
совпадения будет пустым.

Происходит замена “пустой строки”, перед которой идёт <body.*> на
<h1>Hello</h1> . Что, как раз, и есть вставка этой строки после
<body> .

P.S. Этому регулярному выражению не помешают флаги:
/<body.*>/si , чтобы в “точку” входил перевод строки (тег может
занимать несколько строк), а также чтобы теги в другом регистре типа
<BODY> тоже находились.

To formulation

	Frames and windows
	Popups and window methods
	Cross-window communication
	The clickjacking attack

	Binary data, files
	ArrayBuffer, binary arrays
	TextDecoder and TextEncoder
	Blob
	File and FileReader

	Network requests
	Fetch
	FormData
	Fetch: Download progress
	Fetch: Abort
	Fetch: Cross-Origin Requests
	Fetch API
	URL objects
	XMLHttpRequest
	Resumable file upload
	Long polling
	WebSocket
	Server Sent Events

	Storing data in the browser
	Cookies, document.cookie
	LocalStorage, sessionStorage
	IndexedDB

	Animation
	Bezier curve
	CSS-animations
	JavaScript animations

	Web components
	From the orbital height
	Custom elements
	Shadow DOM
	Template element
	Shadow DOM slots, composition
	Shadow DOM styling
	Shadow DOM and events

	Regular expressions
	Patterns and flags
	Character classes
	Unicode: flag "u" and class \p{...}
	Anchors: string start ^ and end $
	Multiline mode of anchors ^ $, flag "m"
	Word boundary: \b
	Escaping, special characters
	Sets and ranges [...]
	Quantifiers +, *, ? and {n}
	Greedy and lazy quantifiers
	Capturing groups
	Backreferences in pattern: \N and \k<name>
	Alternation (OR) |
	Lookahead and lookbehind
	Catastrophic backtracking
	Sticky flag "y", searching at position
	Methods of RegExp and String

